27 research outputs found

    Boiling of Immiscible Mixtures for Cooling of Electronics

    Get PDF
    To satisfy the requirements for the cooling of small and large semiconductors operated at high heat flux density, an innovative cooling method using boiling heat transfer to immiscible liquid mixtures is proposed. Immiscible liquid mixtures discussed here are composed of more-volatile liquid with higher density and less-volatile liquid with lower density, and appropriate volumetric ratios become a key to realize high-performance cooling. The chapter reviews the experimental results obtained by the present authors, where critical heat flux accompanied by the catastrophic surface temperature excursion is increased up to 300 W/cm2 for FC72/water by using a flat heating surface of 40 mm in diameter facing upwards under the pressure 0.1 MPa

    Development of Heated Narrow Channels with Enhanced Liquid Supply in Forced Convective Boiling

    Get PDF
    Abstract Heat generation density from semiconductor devices increases with the rapid development of electronic technology. The cooling system using boiling two-phase phenomena attracts much attention because of its high heat removal potential. Most of heat transfer researches concerning the development of electronic devices are conducted for the cooling of small semiconductor chips, while there are limited numbers of innovative investigations for the cooling of a large area at extremely high heat flux larger than 2×10 6 W/m 2 . The technology can be applied to the cooling systems in space, e.g., cooling of laser medium in solar power satellites when solar energy is converted to laser power. To develop compact and high-performance cooling systems, a structure of narrow heated channel between parallel plates with auxiliary unheated channel was devised and tested by using water in three different kinds of experimental conditions. One of liquid supply method, where liquid is supplied to both of the main heated and the auxiliary unheated channel keeping the exit of the auxiliary channel closed, gives the highest CHF value at total volumetric flow rates more than 3.0×10 -5 m 3 /s and 2mm gap size of main heated channel

    Heat Transfer Characteristics during Boiling of Immiscible Liquids Flowing in Narrow Rectangular Heated Channels

    No full text
    The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF) of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube

    IPACK2009-89009 ADVANCED INTEGRATED COOLING SYSTEMS FOR THERMAL MANAGEMENT IN DATA CENTERS

    No full text
    ABSTRACT For a drastic energy conservation in data centers (more than 30%), a new advanced concept of thermal management systems of integrated cooling network in server racks is proposed, and a series of developmental studies toward the realization of the concept have been conducted. The concept consists of the following technological items: -Plug-in thermal network cables, -Narrow channel heat exchangers (single-phase and twophase), -Thin flat-type heat pipes, -Development of nano-fluids for heat transfer enhancement. In this concept, CPUs in server racks are directly cooled with the aid of advanced 1.5 mm thick flat-type heat pipes or 3 mm thick narrow channel heat exchangers, though CPUs in server racks, at present, are cooled down with massive heat sinks by forced air flow in the racks. In the case of heat pipes, condensation regions are cooled by either single-phase or twophase narrow channel heat sink instead of air-cooled finned heat sink. These cooling units are accommodated in server racks. In addition, plug-in thermal network cables, in which a working fluid for narrow channel heat exchangers is running, are integrated among server racks, and thermal energy dissipated in server racks are inclusively merged and managed by the thermal network cables. The working fluid heated up by the dissipated heat is recuperated in an outdoor cooling system. An attempt at the applications of silver nano-fluids as a working fluid in heat pipes and thermal network is also conducted in the present study. Silver nano-fluids are thermochemically synthesized by a microwave heating technique, which allows for superior stable suspension characteristics
    corecore