28 research outputs found

    Diagnostic Value of DCE-MRI for Differentiating Malignant Adnexal Masses Compared with Contrast-enhanced-T1WI

    Get PDF
    Purpose: To compare the diagnostic performance of dynamic contrast-enhanced-MR (DCE-MR) and delayed contrast-enhanced (CE)-MRI added to unenhanced MRI, including diffusion weighted image (DWI) for differentiating malignant adnexal tumors, conducting a retrospective blinded image interpretation study. Methods: Data of 80 patients suspected of having adnexal tumors by ultrasonography between April 2008 and August 2018 were used for the study. All patients had undergone preoperative MRI and surgical resection at our institution. Four radiologists (two specialized in gynecological radiology and two non-specialized) were enrolled for blinded review of the MR images. A 3-point scale was used: 0 = benign, 1 = indeterminate, and 2 = malignant. Three imaging sets were reviewed: Set A, unenhanced MRI including DWI; Set B, Set A and delayed CE-T1WI; and Set C, Set A and DCE-MRI. Imaging criteria for benign and malignant tumors were given in earlier reports. The diagnostic performance of the three imaging sets of the four readers was calculated. Their areas under the curve (AUCs) were compared using the DeLong method. Results: Accuracies of Set B were 81%–88%. Those of Set C were 81%–85%. The AUCs of Set B were 0.83 and 0.89. Those of Set C were 0.81–0.86. For two readers, Set A showed lower accuracy and AUC than Set B/Set C (less than 0.80), although those were equivalent in other readers. No significant difference in AUCs was found among the three sequence sets. Intrareader agreement was moderate to almost perfect in Sets A and B, and substantial to almost perfect in Set C. Conclusion: DCE-MR showed no superiority for differentiating malignant adnexal tumors from benign tumors compared to delayed CE-T1WI with conventional MR and DWI

    Genetic Association Analysis of NOS1 and Methamphetamine-Induced Psychosis Among Japanese

    Get PDF
    The neuronal nitric oxide synthase gene (NOS1) is located at 12q24, a susceptibility region for schizophrenia, and produces nitric oxide (NO). NO has been reported to play important roles as a gaseous neurotransmitter in brain. NO is a second messenger for the N-methyl-D aspartate (NMDA) receptor and is related to the dopaminergic system. Because the symptomatology of methamphetamine (METH) use disorder patients with psychosis is similar to that of patients with schizophrenia, NOS1 is a good candidate gene for METH-induced psychosis. Therefore, we conducted a case-control association study between NOS1 and METH-induced psychosis with Japanese subjects (183 with METH-induced psychosis patients and 519 controls). We selected seven SNPs (rs41279104, rs3782221, rs3782219, rs561712, rs3782206, rs6490121, rs2682826) in NOS1 from previous reports. Written informed consent was obtained from each subject. This study was approved by the Ethics Committee at Fujita Health University School of Medicine and each participating institute of the Japanese Genetics Initiative for Drug Abuse (JGIDA). No significant association was found between NOS1 and METH-induced psychosis in the allele/genotype-wise or haplotype-wise analyses. In conclusion, we suggest that NOS1 might not contribute to the risk of METH-induced psychosis in the Japanese population

    Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm

    Get PDF
    The mouse embryonic axis is initially formed with a proximal-distal orientation followed by subsequent conversion to a prospective anterior-posterior (A-P) polarity with directional migration of visceral endoderm cells. Importantly, Otx2, a homeobox gene, is essential to this developmental process. However, the genetic regulatory mechanism governing axis conversion is poorly understood. Here, defective axis conversion due to Otx2 deficiency can be rescued by expression of Dkk1, a Wnt antagonist, or following removal of one copy of the beta-catenin gene. Misexpression of a canonical Wnt ligand can also inhibit correct A-P axis rotation. Moreover, asymmetrical distribution of beta-catenin localization is impaired in the Otx2-deficient and Wnt- misexpressing visceral endoderm. Concurrently, canonical Wnt and Dkk1 function as repulsive and attractive guidance cues, respectively, in the migration of visceral endoderm cells. We propose that Wnt/beta-catenin signaling mediates A-P axis polarization by guiding cell migration toward the prospective anterior in the pregastrula mouse embryo.info:eu-repo/semantics/publishedVersio
    corecore