357 research outputs found
ERK2-Mediated Phosphorylation of Par3 Regulates Neuronal Polarization
名古屋大学Nagoya University博士(医学)doctoral thesi
Neuronal Polarity: Positive and Negative Feedback Signals
Establishment and maintenance of neuronal polarity are critical for neuronal development and function. One of the fundamental questions in neurodevelopment is how neurons generate only one axon and several dendrites from multiple minor neurites. Over the past few decades, molecular and cell biological approaches have unveiled a large number of signaling networks regulating neuronal polarity in cultured hippocampal neurons and the developing cortex. Emerging evidence reveals that positive and negative feedback signals play a crucial role in axon and dendrite specification. Positive feedback signals are continuously activated in one of minor neurites and result in axon specification and elongation, whereas negative feedback signals are propagated from a nascent axon terminal to all minor neurites and inhibit the formation of multiple axon, thereby leading to dendrite specification, and maintaining neuronal polarity. This current insight provides a holistic picture of the signaling mechanisms underlying neuronal polarization during neuronal development. Here, our review highlights recent advancements in this fascinating field, with a focus on the positive, and negative feedback signals as key regulatory mechanisms underlying neuronal polarization
Recommended from our members
Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity
In the vasculature, Notch signaling functions as a downstream effecter of Vascular Endothelial Growth Factor (VEGF) signaling. VEGF regulates sprouting angiogenesis in part by inducing and activating matrix metalloproteases (MMPs). This study sought to determine if VEGF regulation of MMPs was mediated via Notch signaling and to determine how Notch regulation of MMPs influenced endothelial cell morphogenesis. We assessed the relationship between VEGF and Notch signaling in cultured human umbilical vein endothelial cells. Overexpression of VEGF-induced Notch4 and the Notch ligand, Dll4, activated Notch signaling, and altered endothelial cell morphology in a fashion similar to that induced by Notch activation. Expression of a secreted Notch antagonist (Notch1 decoy) suppressed VEGF-mediated activation of endothelial Notch signaling and endothelial morphogenesis. We demonstrate that Notch mediates VEGF-induced matrix metalloprotease activity via induction of MMP9 and MT1-MMP expression and activation of MMP2. Introduction of a MMP inhibitor blocked Notch-mediated endothelial morphogenesis. In mice, analysis of VEGF-induced dermal angiogenesis demonstrated that the Notch1 decoy reduced perivascular MMP9 expression. Taken together, our data demonstrate that Notch signaling can act downstream of VEGF signaling to regulate endothelial cell morphogenesis via induction and activation of specific MMPs. In a murine model of VEGF-induced dermal angiogenesis, Notch inhibition led to reduced MMP9 expression
Notch regulates the angiogenic response via induction of VEGFR-1
Notch is a critical regulator of angiogenesis and arterial specification. We show that ectopic expression of activated Notch1 induces endothelial morphogenesis in human umbilical vein endothelial cells (HUVEC) in a VEGFR-1-dependent manner. Notch1-mediated upregulation of VEGFR-1 in HUVEC increased their responsiveness to the VEGFR-1 specific ligand, Placental Growth Factor (PlGF). In mice and human endothelial cells, inhibition of Notch signaling resulted in decreased VEGFR-1 expression during VEGF-A-induced neovascularization. In summary, we show that Notch1 plays a role in endothelial cells by regulating VEGFR-1, a function that may be important for physiological and pathological angiogenesis
A square-planar Ni(II) complex with an N2S2 donor set similar to the active centre of nickel-containing superoxide dismutase and its reaction with superoxide
The structure around the metal centre of a Ni(ii) complex with an N 2S2 square-planar geometry, 1, prepared as a model compound of the NiSOD active site was drastically changed upon addition of potassium superoxide (KO2).application/pdfjournal articl
Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonists-induced orofacial dyskinesia
ジスキネジア新治療法の発見 --副作用を減らす併用薬から新しい創薬標的へ--. 京都大学プレスリリース. 2021-04-16.Antipsychotics often cause tardive dyskinesia, an adverse symptom of involuntary hyperkinetic movements. Analysis of the U.S. Food and Drug Administration Adverse Event Reporting System and JMDC insurance claims revealed that acetaminophen prevents the dyskinesia induced by dopamine D₂ receptor antagonists. In vivo experiments further showed that a 21-day treatment with haloperidol increased the number of vacuous chewing movements (VCMs) in rats, an effect that was inhibited by oral acetaminophen treatment or intracerebroventricular injection of N-(4-hydroxyphenyl)-arachidonylamide (AM404), an acetaminophen metabolite that acts as an activator of the transient receptor potential vanilloid 1 (TRPV1). In mice, haloperidol-induced VCMs were also mitigated by treatment with AM404 applied to the dorsal striatum, but not in TRPV1-deficient mice. Acetaminophen prevented the haloperidol-induced decrease in the number of c-Fos⁺/preproenkephalin⁺ striatal neurons in wild-type mice but not in TRPV1-deficient mice. Finally, chemogenetic stimulation of indirect-pathway medium spiny neurons in the dorsal striatum decreased haloperidol-induced VCMs. These results suggest that acetaminophen activates the indirect pathway neurons by activating TRPV1 channels via AM404
Antitumor Activity of Lenvatinib (E7080): An Angiogenesis Inhibitor That Targets Multiple Receptor Tyrosine Kinases in Preclinical Human Thyroid Cancer Models
Inhibition of tumor angiogenesis by blockading the vascular endothelial growth factor (VEGF) signaling pathway is a promising therapeutic strategy for thyroid cancer. Lenvatinib mesilate (lenvatinib) is a potent inhibitor of VEGF receptors (VEGFR1–3) and other prooncogenic and prooncogenic receptor tyrosine kinases, including fibroblast growth factor receptors (FGFR1–4), platelet derived growth factor receptorα(PDGFRα), KIT, and RET. We examined the antitumor activity of lenvatinib against human thyroid cancer xenograft models in nude mice. Orally administered lenvatinib showed significant antitumor activity in 5 differentiated thyroid cancer (DTC), 5 anaplastic thyroid cancer (ATC), and 1 medullary thyroid cancer (MTC) xenograft models. Lenvatinib also showed antiangiogenesis activity against 5 DTC and 5 ATC xenografts, while lenvatinib showed in vitro antiproliferative activity against only 2 of 11 thyroid cancer cell lines: that is, RO82-W-1 and TT cells. Western blot analysis showed that cultured RO82-W-1 cells overexpressed FGFR1 and that lenvatinib inhibited the phosphorylation of FGFR1 and its downstream effector FRS2. Lenvatinib also inhibited the phosphorylation of RET with the activated mutation C634W in TT cells. These data demonstrate that lenvatinib provides antitumor activity mainly via angiogenesis inhibition but also inhibits FGFR and RET signaling pathway in preclinical human thyroid cancer models.</jats:p
Antitumor Activity of Lenvatinib (E7080): An Angiogenesis Inhibitor That Targets Multiple Receptor Tyrosine Kinases in Preclinical Human Thyroid Cancer Models
Inhibition of tumor angiogenesis by blockading the vascular endothelial growth factor (VEGF) signaling pathway is a promising therapeutic strategy for thyroid cancer. Lenvatinib mesilate (lenvatinib) is a potent inhibitor of VEGF receptors (VEGFR1-3) and other prooncogenic and prooncogenic receptor tyrosine kinases, including fibroblast growth factor receptors (FGFR1-4), platelet derived growth factor receptor (PDGFR ), KIT, and RET. We examined the antitumor activity of lenvatinib against human thyroid cancer xenograft models in nude mice. Orally administered lenvatinib showed significant antitumor activity in 5 differentiated thyroid cancer (DTC), 5 anaplastic thyroid cancer (ATC), and 1 medullary thyroid cancer (MTC) xenograft models. Lenvatinib also showed antiangiogenesis activity against 5 DTC and 5 ATC xenografts, while lenvatinib showed in vitro antiproliferative activity against only 2 of 11 thyroid cancer cell lines: that is, RO82-W-1 and TT cells. Western blot analysis showed that cultured RO82-W-1 cells overexpressed FGFR1 and that lenvatinib inhibited the phosphorylation of FGFR1 and its downstream effector FRS2. Lenvatinib also inhibited the phosphorylation of RET with the activated mutation C634W in TT cells. These data demonstrate that lenvatinib provides antitumor activity mainly via angiogenesis inhibition but also inhibits FGFR and RET signaling pathway in preclinical human thyroid cancer models
KANPHOS: Kinase-associated neural phospho-signaling database for data-driven research
Protein phosphorylation, a key regulator of cellular processes, plays a central role in brain function and is implicated in neurological disorders. Information on protein phosphorylation is expected to be a clue for understanding various neuropsychiatric disorders and developing therapeutic strategies. Nonetheless, existing databases lack a specific focus on phosphorylation events in the brain, which are crucial for investigating the downstream pathway regulated by neurotransmitters. To overcome the gap, we have developed a web-based database named “Kinase-Associated Neural PHOspho-Signaling (KANPHOS).” This paper presents the design concept, detailed features, and a series of improvements for KANPHOS. KANPHOS is designed to support data-driven research by fulfilling three key objectives: (1) enabling the search for protein kinases and their substrates related to extracellular signals or diseases; (2) facilitating a consolidated search for information encompassing phosphorylated substrate genes, proteins, mutant mice, diseases, and more; and (3) offering integrated functionalities to support pathway and network analysis. KANPHOS is also equipped with API functionality to interact with external databases and analysis tools, enhancing its utility in data-driven investigations. Those key features represent a critical step toward unraveling the complex landscape of protein phosphorylation in the brain, with implications for elucidating the molecular mechanisms underlying neurological disorders. KANPHOS is freely accessible to all researchers at https://kanphos.jp
Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield
journal articl
- …
