10 research outputs found
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
Influence of FeP and Al(H2PO4)3 Nanocatalysts on the Thermolysis of Heavy Oil in N2 Medium
The high viscosity of heavy oil is the main challenge hindering its production. Catalytic thermolysis can be an effective solution for the upgrading of heavy oil in reservoir conditions that leads to the viscosity reduction of native oil and increases the yield of light fractions. In this study, the thermolysis of heavy oil produced from Ashalchinskoye field was carried out in the presence of FeP and Al(H2PO4) nanocatalysts at a temperature of 250 °C in N2 gas environment. It was shown that Al(H2PO4)3 and FeP catalysts at a concentration of 0.5% significantly promoted the efficiency of the heavy oil thermolysis and are key controlling factors contributing to the acceleration of chemical reactions. The Al(H2PO4)3 + NiCO3 nanoparticles were active in accelerating the main chemical reactions during upgrading of heavy oil: desulfurization, removal of the side alkyl chains from polyaromatic hydrocarbons, the isomerization of the molecular chain, hydrogenation and ring opening, which led to the viscosity reduction in heavy oil by 42%wt. Moreover, the selectivity of the Al(H2PO4)3 + NiCO3 catalyst relative to the light distillates increased up to 33.56%wt., which is more than two times in contrast to the light distillates of initial crude oil. The content of resins and asphaltenes in the presence of the given catalytic complex was reduced from 34.4%wt. to 14.7%wt. However, FeP + NiCO3 nanoparticles contributed to the stabilization of gasoline fractions obtained after upgraded oil distillation. Based on the results, it is possible to conclude that the thermolysis of heavy oil in the presence of FeP and Al(H2PO4)3 is a promising method for upgrading heavy oil and reducing its viscosity
Catalytic Low-Temperature Thermolysis of Heavy Oil in the Presence of Fullerene C60 Nanoparticles in Aquatic and N2 medium
Catalytic thermolysis is considered to be an effective process for viscosity reduction, the conversion of high-molecular components of oil (resins and asphaltenes) into light hydrocarbons, and the desulfurization of hydrocarbons. In this paper, we conducted non-catalytic and catalytic thermolysis of a heavy oil sample isolated from the Ashalcha oil field (Tatarstan, Russia) at a temperature of 250 °C. Fullerene C60 nanoparticles were applied to promote selective low-temperature thermolytic reactions in the heavy oil, which increase the depth of heavy oil upgrading and enhance the flow behavior of viscous crude oil. In addition, the influence of water content on the performance of heavy oil thermolysis was evaluated. It was found that water contributes to the cracking of high-molecular components such as resins and asphaltenes. The destruction products lead to the improvement of group and fractional components of crude oil. The results of the experiments showed that the content of asphaltenes after the aquatic thermolysis of the heavy oil sample in the presence of fullerene C60 was reduced by 35% in contrast to the initial crude oil sample. The destructive hydrogenation processes resulted in the irreversible viscosity reduction of the heavy oil sample from 3110 mPa.s to 2081 mPa.s measured at a temperature of 20 °C. Thus, the feasibility of using fullerene C60 as an additive in order to increase the yield of light fractions and reduce viscosity is confirmed
Catalytic Low-Temperature Thermolysis of Heavy Oil in the Presence of Fullerene C60 Nanoparticles in Aquatic and N<sub>2</sub> Medium
Catalytic thermolysis is considered to be an effective process for viscosity reduction, the conversion of high-molecular components of oil (resins and asphaltenes) into light hydrocarbons, and the desulfurization of hydrocarbons. In this paper, we conducted non-catalytic and catalytic thermolysis of a heavy oil sample isolated from the Ashalcha oil field (Tatarstan, Russia) at a temperature of 250 °C. Fullerene C60 nanoparticles were applied to promote selective low-temperature thermolytic reactions in the heavy oil, which increase the depth of heavy oil upgrading and enhance the flow behavior of viscous crude oil. In addition, the influence of water content on the performance of heavy oil thermolysis was evaluated. It was found that water contributes to the cracking of high-molecular components such as resins and asphaltenes. The destruction products lead to the improvement of group and fractional components of crude oil. The results of the experiments showed that the content of asphaltenes after the aquatic thermolysis of the heavy oil sample in the presence of fullerene C60 was reduced by 35% in contrast to the initial crude oil sample. The destructive hydrogenation processes resulted in the irreversible viscosity reduction of the heavy oil sample from 3110 mPa.s to 2081 mPa.s measured at a temperature of 20 °C. Thus, the feasibility of using fullerene C60 as an additive in order to increase the yield of light fractions and reduce viscosity is confirmed
Influence of FeP and Al(H<sub>2</sub>PO<sub>4</sub>)<sub>3</sub> Nanocatalysts on the Thermolysis of Heavy Oil in N<sub>2</sub> Medium
The high viscosity of heavy oil is the main challenge hindering its production. Catalytic thermolysis can be an effective solution for the upgrading of heavy oil in reservoir conditions that leads to the viscosity reduction of native oil and increases the yield of light fractions. In this study, the thermolysis of heavy oil produced from Ashalchinskoye field was carried out in the presence of FeP and Al(H2PO4) nanocatalysts at a temperature of 250 °C in N2 gas environment. It was shown that Al(H2PO4)3 and FeP catalysts at a concentration of 0.5% significantly promoted the efficiency of the heavy oil thermolysis and are key controlling factors contributing to the acceleration of chemical reactions. The Al(H2PO4)3 + NiCO3 nanoparticles were active in accelerating the main chemical reactions during upgrading of heavy oil: desulfurization, removal of the side alkyl chains from polyaromatic hydrocarbons, the isomerization of the molecular chain, hydrogenation and ring opening, which led to the viscosity reduction in heavy oil by 42%wt. Moreover, the selectivity of the Al(H2PO4)3 + NiCO3 catalyst relative to the light distillates increased up to 33.56%wt., which is more than two times in contrast to the light distillates of initial crude oil. The content of resins and asphaltenes in the presence of the given catalytic complex was reduced from 34.4%wt. to 14.7%wt. However, FeP + NiCO3 nanoparticles contributed to the stabilization of gasoline fractions obtained after upgraded oil distillation. Based on the results, it is possible to conclude that the thermolysis of heavy oil in the presence of FeP and Al(H2PO4)3 is a promising method for upgrading heavy oil and reducing its viscosity
The Catalytic Upgrading Performance of NiSO<sub>4</sub> and FeSO<sub>4</sub> in the Case of Ashal’cha Heavy Oil Reservoir
Aquathermolysis is a promising process for improving the quality of heavy oil under reservoir conditions. However, the application of catalysts during the process can significantly promote the transformation of the heavy fragments and heteroatom-containing compounds of crude oil mixtures into low-molecular-weight hydrocarbons. This research paper conducted a comparative analysis of the catalytic effectiveness of water-soluble metal salts like NiSO4 and FeSO4 in the process of aquathermolysis to upgrade heavy oil samples extracted from the Ashal’cha reservoir. The temperature of the experiment was 300 °C for a duration of 24 h. Compared to the viscosity of the native crude oil, the Fe nanoparticles contributed to a 60% reduction in viscosity. The viscosity alteration is explained by the chemical changes observed in the composition of heavy oil after catalytic (FeSO4) aquathermolysis, where the asphaltene and resin contents were altered by 7% and 17%, accordingly. Moreover, the observed aquathermolytic upgrading of heavy oil in the presence of FeSO4 led to an increase in the yield of gasoline fraction by 13% and diesel fraction by 53%. The H/C ratio, which represents the hydrogenation of crude oil, increased from 1.52 (before catalytic upgrading) to 1.99 (after catalytic upgrading). The results of Chromatomass (GC MS) and Fourier-transform infrared spectroscopy (FT-IR) show the intensification of destructive hydrogenation reactions in the presence of water-soluble catalysts. According to the XRD and SEM-EDX results, the metal salts are thermally decomposed during the aquathermolysis process into the oxides of corresponding metals and are particularly sulfided by the sulfur-containing aquathermolysis products
Impact of the COVID-19 pandemic on patients with paediatric cancer in low-income, middle-income and high-income countries: a multicentre, international, observational cohort study
OBJECTIVES: Paediatric cancer is a leading cause of death for children. Children in low-income and middle-income countries (LMICs) were four times more likely to die than children in high-income countries (HICs). This study aimed to test the hypothesis that the COVID-19 pandemic had affected the delivery of healthcare services worldwide, and exacerbated the disparity in paediatric cancer outcomes between LMICs and HICs. DESIGN: A multicentre, international, collaborative cohort study. SETTING: 91 hospitals and cancer centres in 39 countries providing cancer treatment to paediatric patients between March and December 2020. PARTICIPANTS: Patients were included if they were under the age of 18 years, and newly diagnosed with or undergoing active cancer treatment for Acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, Wilms' tumour, sarcoma, retinoblastoma, gliomas, medulloblastomas or neuroblastomas, in keeping with the WHO Global Initiative for Childhood Cancer. MAIN OUTCOME MEASURE: All-cause mortality at 30 days and 90 days. RESULTS: 1660 patients were recruited. 219 children had changes to their treatment due to the pandemic. Patients in LMICs were primarily affected (n=182/219, 83.1%). Relative to patients with paediatric cancer in HICs, patients with paediatric cancer in LMICs had 12.1 (95% CI 2.93 to 50.3) and 7.9 (95% CI 3.2 to 19.7) times the odds of death at 30 days and 90 days, respectively, after presentation during the COVID-19 pandemic (p<0.001). After adjusting for confounders, patients with paediatric cancer in LMICs had 15.6 (95% CI 3.7 to 65.8) times the odds of death at 30 days (p<0.001). CONCLUSIONS: The COVID-19 pandemic has affected paediatric oncology service provision. It has disproportionately affected patients in LMICs, highlighting and compounding existing disparities in healthcare systems globally that need addressing urgently. However, many patients with paediatric cancer continued to receive their normal standard of care. This speaks to the adaptability and resilience of healthcare systems and healthcare workers globally
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality
Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries
© 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
© 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research