15 research outputs found

    Melanospora (Sordariomycetes, Ascomycota) and its relatives

    Get PDF
    The order Melanosporales comprises a large group of ascomycetes, most of them mycoparasites, characterized by the production of usually ostiolate, translucent ascomata, unitunicate asci, and unicellular, pigmented ascospores with germ pores or germ slits. The most studied taxa are Melanospora and Sphaerodes, but the boundaries with other morphologically closely related genera are not well resolved. In this study, the taxonomy of Melanospora and related taxa have been re-evaluated based on the analysis of nuclear rDNA, actin and elongation factor genes sequences of fresh isolates and numerous type and reference strains. The genus Melanospora has been restricted to species with ostiolate ascoma whose neck is composed of intermixed hyphae, and with a phialidic asexual morph. Microthecium has been re-established for species of Melanospora and Sphaerodes without a typical ascomatal neck or, if present, being short and composed of angular cells similar to those of the ascomatal wall, and usually producing bulbils. Three new genera have been proposed: Dactylidispora, possessing ascospores with a raised rim surrounding both terminal germ pores; Echinusitheca, with densely setose, dark ascomata; and Pseudomicrothecium, characterized by ascospores with indistinct germ pores. Dichotomous keys to identify the accepted genera of the Melanosporales, and keys to discriminate among the species of Melanospora and Microthecium, as well as a brief description of the accepted species of both genera, are also provided

    Genera of phytopathogenic fungi: GOPHY 1

    Get PDF
    Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, nine new combinations, and four typifications of older names

    Fungal systematics and evolution : FUSE 2

    Get PDF
    The present study introduces two new genera, 14 new species, five new combinations and 12 interesting host and/or geographical records. A majority of the fungi are Ascomycetes, but the study also includes a Basidiomycete, Xerocomellus fulvus described from Pakistan. Under single name nomenclature Zeuctomorpha arecae is reduced to synonymy under Acroconidiellina arecae (Sympoventuriaceae, Venturiales, Dothideomycetes). Based on morphology and phylogenetic affinities, Wojnowicia dactylidis, W. lonicerae and W. spartii are moved to the genus Wojnowiciella (Phaeosphaeriaceae, Pleosporales, Dothideomycetes) and Zalerion arboricola is now accommodated in Lophium (Mytilinidiaceae, Mytilinidiales, Dothideomycetes). Novel genera include: Alfariacladiella gen. nov. (Stachybotryaceae, Hypocreales, Sordariomycetes) with A. spartii sp. nov. as type species, and Calvolachnella gen. nov. (Chaetosphaeriales, Sordariomycetes) to accommodate Calvolachnella guaviyuensis comb. nov., previously included in Pseudolachnella. Novel species include: Castanediella hyalopenicillata from leaf litter (USA), C. malaysiana on Eucalyptus brassiana (Malaysia) (Xylariales, Sordariomycetes), Morchella pakistanica (Morchellaceae, Pezizales, Pezizomycetes) on loamy soil (Pakistan), Muriphaeosphaeria viburni (Phaeosphaeriaceae, Pleosporales, Dothideomycetes) on twigs of Viburnum lantana (Serbia), Phyllosticta aucubae-japonicae (Phyllostictaceae, Botryosphaeriales, Dothideomycetes) on fruit of Aucuba japonica (Japan), Wojnowiciella leptocarpi (Phaeosphaeriaceae, Pleosporales, Dothideomycetes) on stems of Leptocarpus sp. (Australia), and Xylomelasma shoalensis (Sordariomycetes) on a dead branch (USA). New species from Germany include: Neosetophoma lunariae and Phaeosphaeria lunariae (Phaeosphaeriaceae, Pleosporales, Dothideomycetes) on seeds of Lunaria annua, Patellaria quercus (Patellariaceae, Patellariales, Dothideomycetes) on twigs of Quercus sp., Rhinocladiella coryli on stems of Corylus avellana and Rhinocladiella quercus (Herpotrichiellaceae, Chaetothyriales, Eurotiomycetes) on twigs of Quercus robur. Ramularia eucalypti (Mycosphaerellaceae, Capnodiales, Dothideomycetes) is reported on leaves of Citrus maxima from Italy, Beltrania rhombica (Beltraniaceae, Xylariales, Sordariomycetes) on leaves of Acacia sp. from Malaysia and Myrmecridium spartii (Myrmecridiaceae, Myrmecridiales, Sodariomycetes) on Sarothamnus scoparius from Serbia. New reports from Australia include: Dothiora ceratoniae (Dothideaceae, Dothideales, Dothideomycetes) on leaves of Eucalyptus sp., Readeriella dimorphospora (Teratosphaeriaceae, Capnodiales, Dothideomycetes) on Eucalyptus sp., Vermiculariopsiella dichapetali (Sordariomycetes) on leaves of Grevillea sp. and Acacia glaucoptera, and Verrucoconiothyrium nitidae (Montagnulaceae, Pleosporales, Dothideo mycetes), on leaves of Acacia leprosa var. graveolens. New reports from La Reunion (France) include: Botryosphaeria agaves (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes) on branches of Agave sp., Chrysofolia colombiana (Cryphonectriaceae, Diaporthales, Sordariomycetes) on leaves of Syzygium jambos, Colletotrichum karstii (Glomerellaceae, Glomerellales, Sordariomycetes) on leaves of Acacia heterophylla, Epicoccum sorghinum (Didymellaceae, Pleosporales, Dothideomycetes) on leaves of Paspalum sp. and Helminthosporium velutinum (Massarinaceae, Pleosporales, Dothideomycetes) on branches of Stoebia sp. Finally, an epitype is designated for Tracylla aristata (Sordariomycetes) on Eucalyptus regnans (Australia).http://www.sydowia.at/syd62-1/syd62-1.htm2017-09-30am2017Forestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    New species and records of bipolaris and curvularia from Thailand

    No full text
    Several Bipolaris and Curvularia spp. were collected from different disease symptoms of Poaceae in Thailand. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the glyceraldehyde-3-phosphate dehydrogenase and the translation elongation factor 1-α genes, demonstrated that these isolates represent one new species of Bipolaris, B. brachiariae, and five new species of Curvularia, i.e. C. chiangmaiensis, C. dactyloctenicola, C. nodosa, C. pseudobrachyspora, and C. variabilis. Bipolaris brachiariae is related to B. heliconiae, B. maydis, and B. saccharicola, but produces shorter conidiophores and conidia. Curvularia chiangmaiensis is characterized by very long conidiophores to 2 mm. Curvularia dactyloctenicola is closely related to C. chiangmaiensis, but can easily be distinguished by the size of its conidiophores and conidia. Curvularia nodosa is related to C. hawaiiensis and C. dactyloctenii, but it produces abundantly knotted hyphae, which were not observed in the other two species, as well as shorter conidia with fewer septa. Curvularia pseudobrachyspora is related to C. brachyspora, but differs in the size of its conidiophores. Finally, Curvularia variabilis can be easily distinguished by its highly variable conidia. Furthermore, the description of B. oryzae is emended to include two isolates belonging to this species from Thailand that produce much longer conidiophores and conidia with fewer septa than observed in previous descriptions. The present study is also the first report of Bipolaris bicolor, B. setariae and B. yamadae from Thailand. Moreover, new hosts are reported for B. bicolor (Eleusine indica), B. setariae (Imperata cylindrica), and Curvularia verruculosa (Eleusine indica).Yasmina Marin-Felix is grateful for the financial support received from the Vice-Chancellor’s postdoctoral fellowship programme from University of Pretoria, South Africa. The collection trip in Thailand was supported by the Thailand Research Fund (MRG5580163).http://www.mycosphere.orgam2017Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog

    Seven New Cytotoxic and Antimicrobial Xanthoquinodins from Jugulospora vestita.

    No full text
    During the course of a screening for novel biologically active secondary metabolites produced by the Sordariomycetes (Ascomycota, Fungi), the ex-type strain of Jugulospora vestita was found to produce seven novel xanthone-anthraquinone heterodimers, xanthoquinodin A11 (1) and xanthoquinodins B10-15 (2-7), together with the already known compound xanthoquinodin B4 (8). The structures of the xanthoquinodins were determined by analysis of the nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric data. Moreover, the absolute configurations of these metabolites were established by analysis of the 1H-1H coupling constants, nuclear Overhauser effect spectroscopy (NOESY) correlations, and Electronic Circular Dichroism (ECD) spectroscopic data. Antifungal and antibacterial activities as well as cytotoxicity of all compounds were tested. Xanthoquinodin B11 showed fungicidal activities against Mucor hiemalis [minimum inhibitory concentration (MIC) 2.1 µg/mL], Rhodotorula glutinis (MIC 2.1 µg/mL), and Pichia anomala (MIC 8.3 µg/mL). All the compounds 1-8 displayed anti-Gram-positive bacteria activity (MIC 0.2-8.3 µg/mL). In addition, all these eight compounds showed cytotoxicity against KB 3.1, L929, A549, SK-OV-3, PC-3, A431, and MCF-7 mammalian cell lines. The six novel compounds (1-3, 5-7), together with xanthoquinodin B4, were also found in the screening of other strains belonging to Jugulospora rotula, revealing the potential chemotaxonomic significance of the compound class for the genus

    Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov.

    No full text
    Triangularia mangenotti was analyzed for the production of secondary metabolites, resulting in the isolation of known zopfinol (1) and its new derivatives zopfinol B–C (2–4), the 10-membered lactones 7-O-acetylmultiplolide A (5) and 8-O-acetylmultiplolide A (6), together with sordarin (7), sordarin B (8), and hypoxysordarin (9). The absolute configuration of 1 was elucidated by the synthesis of MPTA-esters. Compound 1 showed antimicrobial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus and the fungus Mucor hiemalis. While 4 was weakly antibacterial, 3 showed stronger antibiotic activity against the Gram-positive bacteria and weak antifungal activity against M. hiemalis and Rhodotorula glutinis. We furthermore observed the cytotoxicity of 1, 3 and 4 against the mammalian cell lines KB3.1 and L929. Moreover, the new genus Pseudorhypophila is introduced herein to accommodate Triangularia mangenotii together with several species of Zopfiella—Z. marina, Z. pilifera, and Z. submersa. These taxa formed a well-supported monophyletic clade in the recently introduced family Navicularisporaceae, located far from the type species of the respective original genera, in a phylogram based on the combined dataset sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and fragments of the ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Zopfiella submersa is synonymized with P. marina due to the phylogenetic and morphological similarity. The isolation of zopfinols 1–4 and sordarins 7–9 confirms the potential of this fungal order as producers of bioactive compounds and suggests these compounds as potential chemotaxonomic markers

    Three New Derivatives of Zopfinol from <i>Pseudorhypophila Mangenotii</i> gen. et comb. nov.

    No full text
    Triangularia mangenotti was analyzed for the production of secondary metabolites, resulting in the isolation of known zopfinol (1) and its new derivatives zopfinol B–C (2–4), the 10-membered lactones 7-O-acetylmultiplolide A (5) and 8-O-acetylmultiplolide A (6), together with sordarin (7), sordarin B (8), and hypoxysordarin (9). The absolute configuration of 1 was elucidated by the synthesis of MPTA-esters. Compound 1 showed antimicrobial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus and the fungus Mucor hiemalis. While 4 was weakly antibacterial, 3 showed stronger antibiotic activity against the Gram-positive bacteria and weak antifungal activity against M. hiemalis and Rhodotorula glutinis. We furthermore observed the cytotoxicity of 1, 3 and 4 against the mammalian cell lines KB3.1 and L929. Moreover, the new genus Pseudorhypophila is introduced herein to accommodate Triangularia mangenotii together with several species of Zopfiella—Z. marina, Z. pilifera, and Z. submersa. These taxa formed a well-supported monophyletic clade in the recently introduced family Navicularisporaceae, located far from the type species of the respective original genera, in a phylogram based on the combined dataset sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and fragments of the ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Zopfiella submersa is synonymized with P. marina due to the phylogenetic and morphological similarity. The isolation of zopfinols 1–4 and sordarins 7–9 confirms the potential of this fungal order as producers of bioactive compounds and suggests these compounds as potential chemotaxonomic markers

    Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov

    No full text
    Triangularia mangenotti was analyzed for the production of secondary metabolites, resulting in the isolation of known zopfinol (1) and its new derivatives zopfinol B-C (2-4), the 10-membered lactones 7-O-acetylmultiplolide A (5) and 8-O-acetylmultiplolide A (6), together with sordarin (7), sordarin B (8), and hypoxysordarin (9). The absolute configuration of 1 was elucidated by the synthesis of MPTA-esters. Compound 1 showed antimicrobial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus and the fungus Mucor hiemalis. While 4 was weakly antibacterial, 3 showed stronger antibiotic activity against the Gram-positive bacteria and weak antifungal activity against M. hiemalis and Rhodotorula glutinis. We furthermore observed the cytotoxicity of 1, 3 and 4 against the mammalian cell lines KB3.1 and L929. Moreover, the new genus Pseudorhypophila is introduced herein to accommodate Triangularia mangenotii together with several species of Zopfiella-Z. marina, Z. pilifera, and Z. submersa. These taxa formed a well-supported monophyletic clade in the recently introduced family Navicularisporaceae, located far from the type species of the respective original genera, in a phylogram based on the combined dataset sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and fragments of the ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Zopfiella submersa is synonymized with P. marina due to the phylogenetic and morphological similarity. The isolation of zopfinols 1-4 and sordarins 7-9 confirms the potential of this fungal order as producers of bioactive compounds and suggests these compounds as potential chemotaxonomic markers

    Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon

    No full text
    The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D. brideliae, D. cameroonensis, D. pseudoanacardii and D. rauvolfiae. Moreover, the description of D. isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus
    corecore