324 research outputs found

    AstroSat observation of GX 5-1: Spectral and timing evolution

    Get PDF
    We report on the first analysis of AstroSat observation of the Z-source GX 5- 1 on February 26-27, 2017. The hardness-intensity plot reveals that the source traced out the horizontal and normal branches. The 0.8-20 keV spectra from simultaneous SXT and LAXPC data at different locations of the hardness-intensity plot can be well described by a disk emission and a thermal Comptonized component. The ratio of the disk flux to the total i.e. the disk flux ratio increases monotonically along the horizontal to the normal one. Thus, the difference between the normal and horizontal branches is that in the normal branch, the disk dominates the flux while in the horizontal one it is the Comptonized component which dominates. The disk flux scales with the inner disk temperature as T_{in}^{5.5} and not as T_{in}{4} suggesting that either the inner radii changes dramatically or that the disk is irradiated by the thermal component changing its hardness factor. The power spectra reveal a Quasi Periodic Oscillation whose frequency changes from \sim 30 Hz to 50 Hz. The frequency is found to correlate well with the disk flux ratio. In the 3-20 keV LAXPC band the r.m.s of the QPO increases with energy (r.m.s \prop E0.8), while the harder X-ray seems to lag the soft ones with a time-delay of a milliseconds. The results suggest that the spectral properties of the source are characterized by the disk flux ratio and that the QPO has its origin in the corona producing the thermal Comptonized component

    Fodder production in common lands: An impact narrative from Uttarakhand, India

    Get PDF

    Interaction of immune complexes with glomerular heparan sulfate–proteoglycans

    Get PDF
    Interaction of immune complexes with glomerular heparan sulfate–proteoglycans. The binding characteristics of cationic and more neutral immune complexes with heparan sulfate–proteoglycan enriched anionic sites of glomerular basement membrane and mesangial matrix were studied. Rat kidneys were treated either with buffers alone or buffers containing heparitinase or chondroitinase-ABC followed by perfusion with cationic or native immune complexes. Tissues were processed for immunofluorescence and transmission electron microscopy after fixation with glutaraldehyde or tannic acid glutaraldehyde. Kidneys perfused with radioiodinated immune complexes were processed for light and electron microscopic autoradiography. In addition, glomeruli from kidneys perfused with radioiodinated immune complexes were isolated and counted for radioactivity. By immunofluorescence the cationic immune complexes deposited linearly along the glomerular basement membrane. By electron microscopy, the cationic complexes localized mainly in the inner and outer layers of the glomerular basement membrane and to a certain extent in the mesangial matrix in a distribution that corresponded to previously documented anionic sites. Whereas heparitinase treatment abrogated the binding of cationic immune complexes in both glomerular basement membrane and mesangial matrix, chondroitinase-ABC treatment did not cause any decrease in binding. In contrast, more neutral immune complexes appeared to be nonspecifically trapped in the mesangium, and their distribution was unaffected by both enzymatic treatments. Light and electron microscopic autoradiography and counts of isolated glomeruli confirmed these findings. The results overall indicate that cationic immune complexes bind electrostatically to the heparan sulfate–proteoglycan enriched anionic sites of the glomerular basement membrane and mesangial matrix, while more neutral immune complexes are nonspecifically trapped in the mesangium of the renal glomerulus

    Pharmacokinetics, safety, and efficacy of a single co-administered dose of diethylcarbamazine, albendazole and ivermectin in adults with and without Wuchereria bancrofti infection in Cote d\u27Ivoire

    Get PDF
    BackgroundA single co-administered dose of ivermectin (IVM) plus diethylcarbamazine (DEC) plus albendazole (ALB), or triple-drug therapy, was recently found to be more effective for clearing microfilariae (Mf) than standard DEC plus ALB currently used for mass drug administration programs for lymphatic filariasis (LF) outside of sub-Saharan Africa. Triple-drug therapy has not been previously tested in LF-uninfected individuals from Africa. This study evaluated the pharmacokinetics (PK), safety, and efficacy of triple-drug therapy in people with and without Wuchereria bancrofti infection in West Africa.MethodsIn this open-label cohort study, treatment-naïve microfilaremic (>50 mf/mL, n = 32) and uninfected (circulating filarial antigen negative, n = 24) adults residing in Agboville district, Côte d’Ivoire, were treated with a single dose of IVM plus DEC plus ALB, and evaluated for adverse events (AEs) until 7 days post treatment. Drug levels were assessed by liquid chromatography and mass spectrometry. Persons responsible for assessing AEs were blinded to participants’ infection status.FindingsThere was no difference in AUC0-inf or Cmax between LF-infected and uninfected participants (P>0.05 for all comparisons). All subjects experienced mild AEs; 28% and 25% of infected and uninfected participants experienced grade 2 AEs, respectively. There were no severe or serious adverse events. Only fever (16 of 32 versus 4 of 24, PConclusionsModerate to heavy W. bancrofti infection did not affect PK parameters for IVM, DEC or ALB following a single co-administered dose of these drugs compared to uninfected individuals. The drugs were well tolerated. This study confirmed the efficacy of the triple-drug therapy for clearing W. bancrofti Mf and has added important information to support the use of this regimen in LF elimination programs in areas of Africa without co-endemic onchocerciasis or loiasis.Trial registrationClinicalTrials.gov NCT02845713.</div

    Divergent roles of Smad3 and PI3-kinase in murine adriamycin nephropathy indicate distinct mechanisms of proteinuria and fibrogenesis

    Get PDF
    Multiple transforming growth factor (TGF)-β-induced fibrogenic signals have been described in vitro. To evaluate mechanisms in vivo, we used an adriamycin nephropathy model in 129x1/Svj mice that display massive proteinuria by day 5 to7 and pathological findings similar to human focal segmental glomerulosclerosis by day 14. TGF-β mRNA expression increased after day 7 along with nuclear translocation of the TGF-β receptor-specific transcription factor Smad3. Inhibiting TGF-β prevented both pathological changes and type-I collagen and fibronectin mRNA expression, but proteinuria persisted. Renal Akt was phosphorylated in adriamycin-treated mice, suggesting PI3-kinase activation. Expression of mRNA for the p110γ isozyme of PI3-kinase was specifically increased and p110γ colocalized with nephrin by immunohistochemistry early in disease. Nephrin levels subsequently decreased. Inhibition of p110γ by AS605240 preserved nephrin expression and prevented proteinuria. In cultured podocytes, adriamycin stimulated p110γ expression. AS605240, but not a TGF-β receptor kinase inhibitor, prevented adriamycin-induced cytoskeletal disorganization and apoptosis, supporting a role for p110γ in podocyte injury. AS605240, at a dose that decreased proteinuria, prevented renal collagen mRNA expression in vivo but did not affect TGF-β-stimulated collagen induction in vitro. Thus, PI3-kinase p110γ mediates initial podocyte injury and proteinuria, both of which precede TGF-β-mediated glomerular scarring

    Distribution and relevance of insulin-like growth factor-I receptor in metanephric development

    Get PDF
    Distribution and relevance of insulin-like growth factor-I receptor in metanephric development. During embryogenesis, various ligand-recep-tor interactions take place to modulate the development and growth of various mammalian organs. During these interactions, a critical concentration of a given receptor is needed to elicit a ligand-induced biologic response at a defined gestational stage of the fetus. In this study, the distribution and the relevance of insulin-like growth factor-I receptor (IGF-IR) in metanephric development was investigated. Kidneys were harvested from mouse embryos at days 13 to 19 of fetal gestation, and maintained in a metanephric culture system. Immunofluorescence studies, using anti-IGF-IR, revealed a high expression of IGF-IR at day 13, which declined during the later stages of gestation through neonatal life. To study the relevance of IGF-IR expression in metanephric development, antisense-oligodeoxynucleotide (ODN) experiments were carried out. Antisense-ODN 43 mer probes were synthesized utilizing rat IGF-IR cDNA selected nucleotide sequences which are highly conserved in other mammalian species. Southern blot analyses of various restriction fragments of the rat and mice genomic DNA yielded similar bands when hybridized with the antisense-ODN or rat IGF-IR cDNA, suggesting a high degree of homology in the region of the gene selected for the synthesis of antisense-ODN. Also, the antisense-ODN hybridized with the appropriate murine fetal kidney mRNA species, as ascertained by S1 nuclease protection assay. Inclusion of antisense-ODN in the culture medium resulted in an inhibition of the growth of the kidney, reduction in the population of the nephrons and disorganization of the ureteric bud branches. Effectivity of the antisense-ODN was reduced during the later stages of development when the expression of IGF-IR is decreased. Immunoprecipitation studies revealed a reduction in the IGF-IR associated radioactivity, indicating a specific translational arrest. These studies suggest that IGF-IR is relevant in the modulation of various developmental events during the early midgestational period, the time when it is highly expressed in the metanephric tissues
    • …
    corecore