256 research outputs found

    Strain-Compensated AlInGaAs-GaAsP Superlattices for Highly-Polarized Electron Emission

    Full text link
    Spin-polarized electron emission from the first superlattice photocathodes developed with strain compensation is investigated. An opposite strain in the quantum well and barrier layers is complished using an InAlGaAs/GaAsP superlattice structure. The measured values of maximum polarization and quantum yield for the structure with a 0.18 um-thick working layer are close to the best results reported for any strained superlattice photocathode structure, demonstrating the high potential of strain compensation for future photocathode applications. An analysis of the photoemission spectra is used to estimate the parameters responsible for the polarization losses.Comment: 10 pages, 2 figure

    The current status of orbital experiments for UHECR studies

    Full text link
    Two types of orbital detectors of extreme energy cosmic rays are being developed nowadays: (i) TUS and KLYPVE with reflecting optical systems (mirrors) and (ii) JEM-EUSO with high-transmittance Fresnel lenses. They will cover much larger areas than existing ground-based arrays and almost uniformly monitor the celestial sphere. The TUS detector is the pioneering mission developed in SINP MSU in cooperation with several Russian and foreign institutions. It has relatively small field of view (+/-4.5 deg), which corresponds to a ground area of 6.4x10^3 sq.km. The telescope consists of a Fresnel-type mirror-concentrator (~2 sq.m) and a photo receiver (a matrix of 16x16 photomultiplier tubes). It is to be deployed on the Lomonosov satellite, and is currently at the final stage of preflight tests. Recently, SINP MSU began the KLYPVE project to be installed on board of the Russian segment of the ISS. The optical system of this detector contains a larger primary mirror (10 sq.m), which allows decreasing the energy threshold. The total effective field of view will be at least +/-14 degrees to exceed the annual exposure of the existing ground-based experiments. Several configurations of the detector are being currently considered. Finally, JEM-EUSO is a wide field of view (+/-30 deg) detector. The optics is composed of two curved double-sided Fresnel lenses with 2.65 m external diameter, a precision diffractive middle lens and a pupil. The ultraviolet photons are focused onto the focal surface, which consists of nearly 5000 multi-anode photomultipliers. It is developed by a large international collaboration. All three orbital detectors have multi-purpose character due to continuous monitoring of various atmospheric phenomena. The present status of development of the TUS and KLYPVE missions is reported, and a brief comparison of the projects with JEM-EUSO is given.Comment: 18 pages; based on the rapporteur talk given by M.I. Panasyuk at ECRS-2014; v2: a few minor language issues fixed thanks to the editor; to be published in the proceeding

    Decrease of atmospheric neutron counts observed during thunderstorms.

    Get PDF
    We report here, in brief, some results of the observation and analysis of sporadic variations of atmospheric thermal neutron flux during thunderstorms. The results obtained with unshielded scintillation neutron detectors show a prominent flux decrease correlated with meteorological precipitations after a long dry period. No observations of neutron production during thunderstorms were reported during the three-year period of data recording

    Primary Energy Spectrum and Mass Composition Determined with the Tunka EAS Cherenkov Array

    Full text link
    New results of 300 hours of operation of the Tunka array are presented. An improved parametrization of the Cherenkov light lateral distribution function (LDF), based on CORSIKA Monte Carlo simulations and the experiment QUEST, has been used for the reconstruction of EAS parameters. The corrected energy spectrum in the knee region is obtained. The mean depth of the EAS maximum has been derived both from the analysis of LDF steepness and the FWHM of Cerenkov light pulse. The mean mass composition around the knee is estimated.Comment: 3 pages, 3 figures, to be published in IJMP

    The Tunka Experiment: Towards a 1-km^2 Cherenkov EAS Array in the Tunka Valley

    Full text link
    The project of an EAS Cherenkov array in the Tunka valley/Siberia with an area of about 1 km^2 is presented. The new array will have a ten times bigger area than the existing Tunka-25 array and will permit a detailed study of the cosmic ray energy spectrum and the mass composition in the energy range from 10^15 to 10^18 eV.Comment: 3 pages, 2 figures, to be published in IJMP
    corecore