5 research outputs found

    Genomic and phenotypic insight into Xanthomonas vesicatoria strains with different aggressiveness on tomato

    Get PDF
    Xanthomonas vesicatoria is one of the causal agents of bacterial spot, a disease that seriously affects the production of tomato (Solanum lycopersicum) and pepper (Capsicum annum) worldwide. In Argentina, bacterial spot is found in all tomato producing areas, with X. vesicatoria being one of the main species detected in the fields. Previously, we isolated three X. vesicatoria strains BNM 208, BNM 214, and BNM 216 from tomato plants with bacterial spot, and found they differed in their ability to form biofilm and in their degree of aggressiveness. Here, the likely causes of those differences were explored through genotypic and phenotypic studies. The genomes of the three strains were sequenced and assembled, and then compared with each other and also with 12 other publicly available X. vesicatoria genomes. Phenotypic characteristics (mainly linked to biofilm formation and virulence) were studied in vitro. Our results show that the differences observed earlier between BNM 208, BNM 214, and BNM 216 may be related to the structural characteristics of the xanthan gum produced by each strain, their repertoire of type III effectors (T3Es), the presence of certain genes associated with c-di-GMP metabolism and type IV pili (T4P). These findings on the pathogenicity mechanisms of X. vesicatoria could be useful for developing bacterial spot control strategies aimed at interfering with the infection processes

    Biocontrol of tomato bacterial spot by novel Bacillus and Pseudomonas strains

    No full text
    Bacterial spot is a disease that affects tomato worldwide reducing its yield and quality. It is caused by different Xanthomonas spp., among which is Xanthomonas vesicatoria. Copper-based bactericides are generally used to control this disease, although nowadays sustainable strategies are being searched to efficiently replace their use. Our aim was to select native bacteria from tomato rhizosphere with biocontrol properties against X. vesicatoria. We selected, characterized, and identified three novel strains, two closely related to Bacillus velezensis (VMA11p and VM05) and one closely related to Pseudomonas soli (VMAP1), that in vitro antagonized X. vesicatoria. We evaluated the efficacy of the three rhizobacteria and their cell-free supernatants to control bacterial spot using the model tomato-X. vesicatoria in plants grown in pots, in greenhouse conditions. Bacterial suspensions of VMA11p and VMAP1, applied to the soil by irrigation, significantly (P < 0.05) reduced bacterial spot severity by 53.9% and 44.2%, respectively. Nevertheless, the most effective strategy to control bacterial spot was achieved using the cell-free supernatant produced by VMA11p, VM05 or VMAP1 applied as foliar spray, which significantly (P < 0.05) reduced the severity of the disease by 98.5%, 94.2% and 75.2%, respectively. None of the treatments reduced the growth of tomato plants. Our results suggest that the use of these novel strains of Bacillus and Pseudomonas and/or their metabolic products could be used for the development of biocontrol strategies for the management of bacterial spot in tomato.Fil: Felipe, Verónica. Universidad Nacional de Villa María. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; ArgentinaFil: Bianco, María Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Terrestre, M.. Universidad Nacional de Villa María. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas; ArgentinaFil: Mielnichuk, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Romero, A. M.. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Fitopatología; ArgentinaFil: Yaryura, Pablo Marcelo. Universidad Nacional de Villa María. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentin

    Xanthomonas vesicatoria virulence factors involved in early stages of bacterial spot development in tomato

    No full text
    Xanthomonas vesicatoria (Xv) is a member of a species complex that causes bacterial spot on tomato, one of the most important diseases of this crop worldwide. The objective of this investigation was to analyse several characteristics involved in Xv virulence in relation to strain aggressiveness. Motility, biofilm formation, adhesion and production of xanthan were evaluated in three local strains causing tomato bacterial spot in Argentina. The strains assayed presented differential swarming and twitching motilities, adhesion and biofilm formation abilities. The most aggressive strain, BNM 208, exhibited the greatest swarming and twitching motilities, and developed a mature biofilm with presence of defined cell clusters, a homogeneous and compact structure, and higher biomass and substratum coverage than the other two strains. Even though the three strains produced similar amounts of xanthan, BNM 208 produced the most viscous exopolysaccharide, which possibly relates to the better characteristics of its biofilm. Despite other differences, the three strains multiplied to similar levels when they were infiltrated into the leaf. The results suggest that the aggressiveness of Xv strains studied in this work was related to their ability to move by flagella or type IV pili, adhere to leaves and form well developed biofilms, factors that improve phyllosphere colonization. A better understanding of the factors involved in the Xv infection process at the early stages would contribute to developing new control strategies for this phytopathogen.Fil: Felipe, Verónica. Universidad Nacional de Villa María; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Romero, A. M.. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Montecchia, Marcela Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; ArgentinaFil: Vojnov, Adrián Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Bianco, María Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Yaryura, Pablo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentin

    The histone-like protein HupB influences biofilm formation and virulence in Xanthomonas citri ssp. citri through the regulation of flagellar biosynthesis

    Get PDF
    Citrus canker is an important disease of citrus, whose causal agent is the bacterium Xanthomonas citri ssp. citri (Xcc). In previous studies, we found a group of Xcc mutants, generated by the insertion of the Tn5 transposon, which showed impaired ability to attach to an abiotic substrate. One of these mutants carries the Tn5 insertion in hupB, a gene encoding a bacterial histone-like protein, homologue to the β-subunit of the Heat-Unstable (HU) nucleoid protein of Escherichia coli. These types of protein are necessary to maintain the bacterial nucleoid organization and the global regulation of gene expression. Here, we characterized the influence of the mutation in hupB regarding Xcc biofilm forma tion and virulence. The mutant strain hupB was incapable of swimming in soft agar, whereas its complemented strain partially recovered this phenotype. Electron microscope imaging revealed that impaired motility of hupB was a consequence of the absence of the flagellum. Comparison of the expression of flagellar genes between the wild-type strain and hupB showed that the mutant exhibited decreased expression of fliC (encoding flagellin). The hupB mutant also displayed reduced virulence compared with the wild-type strain when they were used to infect Citrus lemon plants using different infection methods. Our results therefore show that the histone-like protein HupB plays an essential role in the pathogenesis of Xcc through the regulation of biofilm formation and biosynthesis of the flagellum.Fil: Conforte, Valeria P. Instituto de Ciencia y Tecnología Dr. César Milstein (ICT – CONICET - Fundación Pablo Cassará); Argentina.Fil: Malamud, Florencia. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Yaryura, Pablo M. Universidad de Villa María. Centro de Investigaciones y Transferencia de Villa María (CIT - CONICET); Argentina.Fil: Toum Terrones, Laila. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina.Fil: Toum Terrones, Laila. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA - CONICET); Argentina.Fil: Torres, Pablo S. Instituto de Ciencia y Tecnología Dr. César Milstein (ICT – CONICET - Fundación Pablo Cassará); Argentina.Fil: De Pino, Verónica. Instituto de Ciencia y Tecnología Dr. César Milstein (ICT – CONICET - Fundación Pablo Cassará); Argentina.Fil: Chazarreta, Cristian N. Instituto de Ciencia y Tecnología Dr. César Milstein (ICT – CONICET - Fundación Pablo Cassará); Argentina.Fil: Gudesblat, Gustavo E. Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA – CONICET -Estación Experimental Agroindustrial Obispo Colombres (EEAOC); Argentina.Fil: Castagnaro, Atilio P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina.Fil: Castagnaro, Atilio P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA - CONICET); Argentina.Fil: Marano, María Rosa. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina.Fil: Marano, María Rosa. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Vojnov, Adrián A. Instituto de Ciencia y Tecnología Dr. César Milstein (ICT – CONICET - Fundación Pablo Cassará); Argentina
    corecore