7 research outputs found

    Germline mismatch repair (MMR) gene analyses from English NHS regional molecular genomics laboratories 1996–2020: development of a national resource of patient-level genomics laboratory records

    Get PDF
    Objective To describe national patterns of National Health Service (NHS) analysis of mismatch repair (MMR) genes in England using individual-level data submitted to the National Disease Registration Service (NDRS) by the NHS regional molecular genetics laboratories. Design Laboratories submitted individual-level patient data to NDRS against a prescribed data model, including (1) patient identifiers, (2) test episode data, (3) per-gene results and (4) detected sequence variants. Individualised per-laboratory algorithms were designed and applied in NDRS to extract and map the data to the common data model. Laboratory-level MMR activity audit data from the Clinical Molecular Genetics Society/Association of Clinical Genomic Science were used to assess early years’ missing data. Results Individual-level data from patients undergoing NHS MMR germline genetic testing were submitted from all 13 English laboratories performing MMR analyses, comprising in total 16 722 patients (9649 full-gene, 7073 targeted), with the earliest submission from 2000. The NDRS dataset is estimated to comprise >60% of NHS MMR analyses performed since inception of NHS MMR analysis, with complete national data for full-gene analyses for 2016 onwards. Out of 9649 full-gene tests, 2724 had an abnormal result, approximately 70% of which were (likely) pathogenic. Data linkage to the National Cancer Registry demonstrated colorectal cancer was the most frequent cancer type in which full-gene analysis was performed. Conclusion The NDRS MMR dataset is a unique national pan-laboratory amalgamation of individual-level clinical and genomic patient data with pseudonymised identifiers enabling linkage to other national datasets. This growing resource will enable longitudinal research and can form the basis of a live national genomic disease registry. Data availability statement Data are available upon reasonable request. Data may be obtained from a third party and are not publicly available. All data relevant to the study are included in the article or uploaded as supplementary information. All summary data relevant to the study are included in the article or uploaded as online supplementary information. Individual level data detailed in this study are held within NHS Digital with access available on application

    Extent of investigation and management of cases of ‘unexplained’ mismatch repair deficiency (u-dMMR): a UK Cancer Genetics Group consensus

    Get PDF
    Background Mismatch repair deficiency (dMMR) is a characteristic feature of cancers linked to Lynch syndrome. However, in most cases, it results from sporadic somatic events rather than hereditary factors. The term'Lynch-like syndrome' (LLS) has been used to guide colorectal cancer surveillance for relatives of individuals with a dMMR tumour when somatic and germline genomic testing is uninformative. As the assessment of mismatch repair through immunohistochemistry and/or microsatellite instability is increasingly applied across various tumour types for treatment planning, dMMR is increasingly detected in tumours where suspicion of hereditary aetiology is low. Our objective was to establish current practices and develop national guidance for investigating, and managing relatives of, patients with cancers demonstrating unexplained dMMR. Methods This was achieved through a virtual consensus meeting involving key stakeholders from the UK, through premeeting surveys, structured discussions and in-meeting polling to formulate best practice guidance. Results We identified variability in the availability of diagnostic technologies across specialist centres. It was agreed that equitable access to baseline testing is required, acknowledging the need for a pragmatic approach to investigating dMMR cancers not traditionally associated with Lynch syndrome. Factors such as family history, age, tumour type, protein loss pattern and extent of the investigation were deemed crucial in guiding family management. The term'unexplained dMMR' was recommended over LLS. Conclusion Decisions regarding investigations and future cancer risk management in patients and relatives should be nuanced, considering factors like clinical suspicion of hereditary predisposition to allocate limited resources efficiently and avoid unnecessary investigations in low-suspicion families

    Clinical and Genetic Analysis of Patients with Cystinuria in the United Kingdom

    No full text
    BACKGROUND AND OBJECTIVES: Cystinuria is a rare inherited renal stone disease. Mutations in the amino acid exchanger System b(0,+), the two subunits of which are encoded by SLC3A1 and SLC7A9, predominantly underlie this disease. The work analyzed the epidemiology of cystinuria and the influence of mutations in these two genes on disease severity in a United Kingdom cohort. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Prevalent patients were studied from 2012 to 2014 in the northeast and southwest of the United Kingdom. Clinical phenotypes were defined, and genetic analysis of SLC3A1 and SLC7A9 combining Sanger sequencing and multiplex ligation probe–dependent amplification was performed. RESULTS: In total, 76 patients (42 men and 34 women) were studied. All subjects had proven cystine stones. Median age of presentation (first stone episode) was 24 years old, but 21% of patients presented after 40 years old. Patients had varied clinical courses, with 37% of patients having ≥10 stone episodes; 70% had evidence of CKD, and 9% had reached ESRD as a result of cystinuria and its complications. Patients with cystinuria received a variety of different therapies, with no obvious treatment consensus. Notably, 20% of patients had staghorn calculi, with associated impaired renal function in 80% of these patients. Genetic analysis revealed that biallelic mutations were present in either SLC3A1 (n=27) or SLC7A9 (n=20); 22 patients had only one mutated allele detected (SLC3A1 in five patients and SLC7A9 in 17 patients). In total, 37 different mutant variant alleles were identified, including 12 novel mutations; 22% of mutations were caused by large gene rearrangements. No genotype-phenotype association was detected in this cohort. CONCLUSIONS: Patients with cystinuria in the United Kingdom often present atypically with staghorn calculi at ≥40 years old and commonly develop significant renal impairment. There is no association of clinical course with genotype. Treatments directed toward reducing stone burden need to be rationalized and developed to optimize patient care

    Homologous recombination deficiency in newly diagnosed FIGO stage III/IV high-grade epithelial ovarian cancer: a multi-national observational study

    Get PDF
    OBJECTIVE: Olaparib plus bevacizumab maintenance therapy improves survival outcomes in women with newly diagnosed, advanced, high-grade ovarian cancer with a deficiency in homologous recombination. We report data from the first year of routine homologous recombination deficiency testing in the National Health Service (NHS) in England, Wales, and Northern Ireland between April 2021 and April 2022. METHODS: The Myriad myChoice companion diagnostic was used to test DNA extracted from formalin-fixed, paraffin-embedded tumor tissue in women with newly diagnosed International Federation of Gynecology and Obstetrics (FIGO) stage III/IV high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer. Tumors with homologous recombination deficiency were those with a BRCA1/2 mutation and/or a Genomic Instability Score (GIS) ≥42. Testing was coordinated by the NHS Genomic Laboratory Hub network. RESULTS: The myChoice assay was performed on 2829 tumors. Of these, 2474 (87%) and 2178 (77%) successfully underwent BRCA1/2 and GIS testing, respectively. All complete and partial assay failures occurred due to low tumor cellularity and/or low tumor DNA yield. 385 tumors (16%) contained a BRCA1/2 mutation and 814 (37%) had a GIS ≥42. Tumors with a GIS ≥42 were more likely to be BRCA1/2 wild-type (n=510) than BRCA1/2 mutant (n=304). The distribution of GIS was bimodal, with BRCA1/2 mutant tumors having a higher mean score than BRCA1/2 wild-type tumors (61 vs 33, respectively, χ2 test p<0.0001). CONCLUSION: This is the largest real-world evaluation of homologous recombination deficiency testing in newly diagnosed FIGO stage III/IV high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer. It is important to select tumor tissue with adequate tumor content and quality to reduce the risk of assay failure. The rapid uptake of testing across England, Wales, and Northern Ireland demonstrates the power of centralized NHS funding, center specialization, and the NHS Genomic Laboratory Hub network
    corecore