21 research outputs found
Induced ferroelectric phases in SrTiO3 by a nanocomposite approach
Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films
Prediction of Spin Polarized Fermi Arcs in Quasiparticle Interference of CeBi
We predict that CeBi in the ferromagnetic state is a Weyl semimetal. Our
calculations within density functional theory show the existence of two pairs
of Weyl nodes on the momentum path at meV} above and
meV below the Fermi level. Two corresponding Fermi arcs are obtained on
surfaces of mirror-symmetric (010)-oriented slabs at meV and both arcs
are interrupted into three segments due to hybridization with a set of trivial
surface bands. By studying the spin texture of surface states, we find the two
Fermi arcs are strongly spin-polarized but in opposite directions, which can be
detected by spin-polarized ARPES measurements. Our theoretical study of
quasiparticle interference (QPI) for a nonmagnetic impurity at the Bi site also
reveals several features related to the Fermi arcs. Specifically, we predict
that the spin polarization of the Fermi arcs leads to a bifurcation-shaped
feature only in the spin-dependent QPI spectrum, serving as a fingerprint of
the Weyl nodes.Comment: 9 pages with 9 embedded figures. Supplemental material shortene
Surface Effects on Anisotropic Photoluminescence in One-Dimensional Organic Metal Halide Hybrids
One-dimensional (1D) organic metal halide hybrids exhibit strongly
anisotropic optical properties, highly efficient light emission, and large
Stokes shift, holding promises for novel photodetection and lighting
applications. However, the fundamental mechanisms governing their unique
optical properties and in particular the impacts of surface effects are not
understood. Here, we investigate 1D C4N2H14PbBr4 by polarization-dependent
time-averaged and time-resolved photoluminescence (TRPL) spectroscopy, as a
function of photoexcitation energy. Surprisingly, we find that the emission
under photoexcitation polarized parallel to the 1D metal halide chains can be
either stronger or weaker than that under perpendicular polarization, depending
on the excitation energy. We attribute the excitation-energy-dependent
anisotropic emission to fast surface recombination, supported by
first-principles calculations of optical absorption in this material. The fast
surface recombination is directly confirmed by TRPL measurements, when the
excitation is polarized parallel to the chains. Our comprehensive studies
provide a more complete picture for a deeper understanding of the optical
anisotropy in 1D organic metal halide hybrids
Manipulating Multiple Order Parameters via Oxygen Vacancies: The case of Eu0.5Ba0.5TiO3-{\delta}
Controlling functionalities, such as magnetism or ferroelectricity, by means
of oxygen vacancies (VO) is a key issue for the future development of
transition metal oxides. Progress in this field is currently addressed through
VO variations and their impact on mainly one order parameter. Here we reveal a
new mechanism for tuning both magnetism and ferroelectricity simultaneously by
using VO. Combined experimental and density-functional theory studies of
Eu0.5Ba0.5TiO3-{\delta}, we demonstrate that oxygen vacancies create Ti3+ 3d1
defect states, mediating the ferromagnetic coupling between the localized Eu
4f7 spins, and increase an off-center displacement of Ti ions, enhancing the
ferroelectric Curie temperature. The dual function of Ti sites also promises a
magnetoelectric coupling in the Eu0.5Ba0.5TiO3-{\delta}.Comment: Accepted by Physical Review B, 201
Recommended from our members
Competing Interface and Bulk Effect-Driven Magnetoelectric Coupling in Vertically Aligned Nanocomposites.
Room-temperature magnetoelectric (ME) coupling is developed in artificial multilayers and nanocomposites composed of magnetostrictive and electrostrictive materials. While the coupling mechanisms and strengths in multilayers are widely studied, they are largely unexplored in vertically aligned nanocomposites (VANs), even though theory has predicted that VANs exhibit much larger ME coupling coefficients than multilayer structures. Here, strong transverse and longitudinal ME coupling in epitaxial BaTiO3:CoFe2O4 VANs measured by both optical second harmonic generation and piezoresponse force microscopy under magnetic fields is reported. Phase field simulations have shown that the ME coupling strength strongly depends on the vertical interfacial area which is ultimately controlled by pillar size. The ME coupling in VANs is determined by the competition between the vertical interface coupling effect and the bulk volume conservation effect. The revealed mechanisms shed light on the physical insights of vertical interface coupling in VANs in general, which can be applied to a variety of nanocomposites with different functionalities beyond the studied ME coupling effect.The work at Los Alamos National Laboratory was supported by the NNSA's Laboratory Directed Research and Development Program and was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA, under contract 89233218CNA000001. Angular‐dependent magnetization studies (L.C.) were partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division
Magnetic, electronic, and optical properties of double perovskite Bi2FeMnO6
Double perovskite Bi2FeMnO6 is a potential
candidate for the single-phase multiferroic system. In this work, we study the
magnetic, electronic, and optical properties in BFMO by performing the density functional theory
calculations and experimental measurements of magnetic moment. We also
demonstrate the strain dependence of magnetization. More importantly, our calculations of
electronic and optical properties reveal that the onsite local correlation on Mn and
Fe sites is critical to the gap opening in BFMO, which is a prerequisite condition
for the ferroelectric ordering. Finally, we calculate the x-ray magnetic circular
dichroism spectra of Fe and Mn ions (L2 and L3 edges) in
BFMO
Recommended from our members
Highly Mobile Excitons in Single Crystal Methylammonium Lead Tribromide Perovskite Microribbons
Excitons are often given negative connotation in solar energy harvesting in part due to their presumed short diffusion lengths. We investigate exciton transport in single-crystal methylammonium lead tribromide (MAPbBr3) microribbons via spectrally, spatially, and temporally resolved photocurrent and photoluminescence measurements. Distinct peaks in the photocurrent spectra unambiguously confirm exciton formation and allow for accurate extraction of the low temperature exciton binding energy (39 meV). Photocurrent decays within a few μm at room temperature, while a gate-tunable long-range photocurrent component appears at lower temperatures (about 100 μm below 140 K). Carrier lifetimes of 1.2 μs or shorter exclude the possibility of the long decay length arising from slow trapped-carrier hopping. Free carrier diffusion is also an unlikely source of the highly nonlocal photocurrent, due to their small fraction at low temperatures. We attribute the long-distance transport to high-mobility excitons, which may open up new opportunities for novel exciton-based photovoltaic applications
Effects of biaxial strain on the improper multiferroicity in \u3ci\u3eh\u3c/i\u3e-LuFeO\u3csub\u3e3\u3c/sub\u3e films studied using the restrained thermal expansion method
Elastic strain is potentially an important approach in tuning the properties of the improperly multiferroic hexagonal ferrites, the details of which, however, have been elusive due to experimental difficulties. Employing the method of restrained thermal expansion, we have studied the effect of isothermal biaxial strain in the basal plane of h-LuFeO3 (001) films. The results indicate that a compressive biaxial strain significantly enhances the K3 structural distortion (the order parameter of the improper ferroelectricity), and the effect is larger at higher temperatures. The compressive biaxial strain and the enhanced K3 structural distortion together cause an increase in the electric polarization and a reduction in the canting of the weak ferromagnetic moments in h-LuFeO3, according to our first principles calculations. These findings are important for understanding the strain effect as well as the coupling between the lattice and the improper multiferroicity in h-LuFeO3. The experimental elucidation of the strain effect in h-LuFeO3 films also suggests that the restrained thermal expansion can be a viable method to unravel the strain effect in many other thin film materials