18 research outputs found
Recommended from our members
Corrigendum: A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.
[This corrects the article DOI: 10.3389/fncir.2018.00094.]
A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.
The "connectome," a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond
A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System
The “connectome,” a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond
The Effects of Reducing Preparation Time on the Execution of Intentionally Curved Trajectories: Optimization and Geometrical Analysis
When subjects are intentionally preparing a curved trajectory, they are engaged in a time-consuming trajectory planning process that is separate from target selection. To investigate the construction of such a plan, we examined the effect of artificially shortening preparation time on the performance of intentionally curved trajectories using the Timed Response task that enforces initiation of movements prematurely. Fifteen subjects performed obstacle avoidance movements toward one of four targets that were presented 25 or 350 ms before the “go” signal, imposing short and long preparation time conditions with mean values of 170 ms and 493 ms, respectively. While trajectories with short preparation times showed target specificity at their onset, they were significantly more variable and showed larger angular deviations from the lines connecting their initial position and the target, compared to the trajectories with long preparation times. Importantly, the trajectories of the short preparation time movements still reached their end-point targets accurately, with comparable movement durations. We hypothesize that success in the short preparation time condition is a result of an online control mechanism that allows further refinement of the plan during its execution and study this control mechanism with a novel trajectory analysis approach using minimum jerk optimization and geometrical modeling approaches. Results show a later agreement of the short preparation time trajectories with the optimal minimum jerk trajectory, accompanied by a later initiation of a parabolic segment. Both observations are consistent with the existence of an online trajectory planning process.Our results suggest that when preparation time is not sufficiently long, subjects execute a more variable and less optimally prepared initial trajectory and exploit online control mechanisms to refine their actions on the fly
Cross-Classification Clustering: An Efficient Multi-Object Tracking Technique for 3-D Instance Segmentation in Connectomics
© 2019 IEEE. Pixel-accurate tracking of objects is a key element in many computer vision applications, often solved by iterated individual object tracking or instance segmentation followed by object matching. Here we introduce cross-classification clustering (3C), a technique that simultaneously tracks complex, interrelated objects in an image stack. The key idea in cross-classification is to efficiently turn a clustering problem into a classification problem by running a logarithmic number of independent classifications per image, letting the cross-labeling of these classifications uniquely classify each pixel to the object labels. We apply the 3C mechanism to achieve state-of-the-art accuracy in connectomics-The nanoscale mapping of neural tissue from electron microscopy volumes. Our reconstruction system increases scalability by an order of magnitude over existing single-object tracking methods (such as flood-filling networks). This scalability is important for the deployment of connectomics pipelines, since currently the best performing techniques require computing infrastructures that are beyond the reach of most laboratories. Our algorithm may offer benefits in other domains that require pixel-accurate tracking of multiple objects, such as segmentation of videos and medical imagery
Multi-criteria benchmarking of movement generating dynamical systems for learning-from-demonstrations
Lemme A, Meirovitch Y, Khansari-Zadeh SM, Flash T, Billard A, Steil JJ. Multi-criteria benchmarking of movement generating dynamical systems for learning-from-demonstrations. Bielefeld University; 2014.This MATLAB benchmark framework was developed to compare different methods for generating goal directed trajectories and extract their specificities, strengths and weaknesses. It allows each user to configure different perturbations which can occur during a movement execution and prepare their models for the given task before a baseline parameter set is used to create comparable results.
For more information, please refer to the entry in CITEC's Cognitive Interaction Toolkit Catalogue (CITK):
http://toolkit.cit-ec.uni-bielefeld.de/datasets/amarsi-benchmark-framework
Software updates und support:
https://opensource.cit-ec.de/projects/amars