3 research outputs found

    Protective effect of resveratrol against methotrexate-induced oxidative stress in the small intestinal tissues of rats

    Get PDF
    Kurt, Nezahat/0000-0002-1685-5332; Arslan, Aynur/0000-0001-5968-5823WOS: 000361557500026PubMed: 26379839The effect of resveratrol on the damage induced by methotrexate (MTX) in rat duodenum and jejunum tissue was investigated and evaluated in comparison with famotidine. the rats were divided into four groups as healthy group (HG), resveratrol+MTX (RMTX) group, famotidine+MTX (FMTX) group and the control group which received MTX (MTXC). RMTX group was given resveratrol 25 mg/kg and FMTX group famotidin 25 mg/kg, while MTXC and HG groups were orally administered distilled water once a day for 30 days. the rats in RMTX, FMTX and MTXC groups were given MTX of 5 mg/kg dose by the same way for 30 days. At the end of this period, amount of MDA, 8-OH/Gua and tGSH, and MPO gene expression were measured in the duodenal and jejunal tissues and the results were histopathologically evaluated. Resveratrol and famotidine were found to significantly prevent elevation of the MDA, 8-OH/Gua and MPO parameters with MTX and decrease of the levels of tGSH in the duodenal and jejunal tissues. Both drugs prevented severe damage to the villus and crypt epithelium in the duodenum and jejunum, congestion and hemorrhage, inflammatory cell infiltration and necrosis in the mucosa and submucosa due to MTX administration. Resveratrol could be considered in the clinical practice for treatment of the tissue damage in the intestines due to use of MTX, in comparison with famotidine. Resveratrol may be more advantageous than famotidine in long-term use against MTX toxicity since it does not inhibit gastric acid secretion

    Gene expression and histopathological evaluation of thiamine pyrophosphate on optic neuropathy induced with ethambutol in rats

    Get PDF
    Cetin, Nihal/0000-0003-3233-8009;WOS: 000385691100004PubMed: 27803853AIM: To compare the effects of thiamine pyrophosphate (TPP) and thiamine (TM) in oxidative optic neuropathy in rats induced by ethambutol. METHODS: the animals were divided into four groups: a control group (CG), an ethambutol control (ETC) group, TM plus ethambutol group (TMG), and TPP plus ethambutol group (TPPG). One hour after intraperitoneal administration of TM 20 mg/kg to the TMG group and TPP 20 mg/kg to TPPG group, 30 mg/kg ethambutol was given via gavage to all the groups but the CG. This procedure was repeated once daily for 90d. After that period, all rats were exposed to high levels of anaesthesia in order to investigate the gene expression of malondialdehyde and glutathione in removed optic nerve tissue and histopathologically to examine these tissues. RESULTS: Malondialdehyde gene expression significantly increased, whereas glutathione gene expression significantly decreased in the ETC group compared to the CG. TM could not prevent the increase of malondialdehyde gene expression and the decrease of glutathione, while TPP significantly could suppress. Histopathologically, significant vacuolization in the optic nerve, single-cell necrosis in the glial cells, and a decrease in oligodendrocytes were observed in the ETC group. Vacuolization in the optic nerve, a decrease in oligodendrocytes and single-cell necrosis were found in the TMG group, while no pathological finding was observed in the TPPG group except for mild vacuolization. CONCLUSION: TPP protects the optic nerve against the ethambutol-induced toxicity but TM does not. TPP can be beneficial in prophilaxis of optic neuropathy in ethambutol therapy
    corecore