38 research outputs found

    Biallelic Variants in PYROXD2 Cause a Severe Infantile Metabolic Disorder Affecting Mitochondrial Function

    Get PDF
    Pyridine Nucleotide-Disulfide Oxidoreductase Domain 2 (PYROXD2; previously called YueF) is a mitochondrial inner membrane/matrix-residing protein and is reported to regulate mitochondrial function. The clinical importance of PYROXD2 has been unclear, and little is known of the protein’s precise biological function. In the present paper, we report biallelic variants in PYROXD2 identified by genome sequencing in a patient with suspected mitochondrial disease. The child presented with acute neurological deterioration, unresponsive episodes, and extreme metabolic acidosis, and received rapid genomic testing. He died shortly after. Magnetic resonance imaging (MRI) brain imaging showed changes resembling Leigh syndrome, one of the more common childhood mitochondrial neurological diseases. Functional studies in patient fibroblasts showed a heightened sensitivity to mitochondrial metabolic stress and increased mitochondrial superoxide levels. Quantitative proteomic analysis demonstrated decreased levels of subunits of the mitochondrial respiratory chain complex I, and both the small and large subunits of the mitochondrial ribosome, suggesting a mitoribosomal defect. Our findings support the critical role of PYROXD2 in human cells, and suggest that the biallelic PYROXD2 variants are associated with mitochondrial dysfunction, and can plausibly explain the child’s clinical presentation

    Successful treatment of lathosterolosis: A rare defect in cholesterol biosynthesis-A case report and review of literature.

    Get PDF
    Lathosterolosis is a rare autosomal recessive disorder of cholesterol biosynthesis. It is caused by defects in the SC5D (sterol C5-desaturase) gene which encodes for the 3-beta-hydroxysteroid-delta-5-desaturase (also called sterol-C5-desaturase or lathosterol dehydrogenase). Only six cases have been described in the literature, but it is possible that a number of patients with milder forms of the condition might have been missed. Lathosterolosis manifests as microcephaly, bilateral cataracts, dysmorphism, limb anomalies, and developmental delay/intellectual disability. Liver involvement is variable and can range from normal liver function tests to portal fibrosis and cirrhosis. Diagnosis is made by demonstration of specific mutations in the SC5D gene and by plasma sterol analysis to confirm elevated lathosterol levels. In this report, we describe a girl with transaminitis in association with developmental delay/intellectual disability, facial dysmorphism, limb anomalies, and bilateral cataracts. Fibroscan showed severe liver fibrosis. Plasma sterol analysis and exome sequencing confirmed the diagnosis of lathosterolosis. Simvastatin treatment resulted in lowering of plasma lathosterol levels, improvement in transaminitis, and liver fibrosis grade, suggesting that children with this condition should be actively treated in order to prevent progression of liver disease

    Hyperinsulinaemic hypoglycaemia: A rare association of vanishing white matter disease.

    Get PDF
    We report two unrelated patients with infantile onset leukoencephalopathy with vanishing white matter (VWM) and hyperinsulinaemic hypoglycaemia. To our knowledge, this association has not been described previously. Both patients had compound heterozygous pathogenic variants in EIF2B4 detected on exome sequencing and absence of other variants which might explain the hyperinsulinism. Hypoglycaemia became apparent at 6 and 8 months, respectively, although in one patient, transient neonatal hypoglycaemia was also documented. One patient responded to diazoxide and the other was managed with continuous nasogastric feeding. We hypothesise that the pathophysiology of hyperinsulinism in VWM may involve dysregulation of transcription of genes related to insulin secretion

    Beta-ureidopropionase deficiency presenting with congenital anomalies of the urogenital and colorectal systems

    No full text
    Beta-ureidopropionase deficiency (McKusick 606673) is an autosomal recessive condition caused by mutations in the UPB1 gene. To date, five patients have been reported, including one putative case detected through newborn screening. Clinical presentation includes neurological and developmental problems. Here, we report another case of beta-ureidopropionase deficiency who presented with congenital anomalies of the urogenital and colorectal systems and with normal neurodevelopmental milestones. Analysis of a urine sample, because of the suspicion of renal stones on ultrasound, showed strongly elevated levels of the characteristic metabolites, N-carbamyl-beta-amino acids. Subsequent analysis of UPB1 identified a novel mutation 209 G>C (R70P) in exon 2 and a previously reported splice receptor mutation IVS1-2A>G. Expression studies of the R70P mutant enzyme showed that the mutant enzyme did not possess any residual activity. Long-term follow-up is required to determine the clinical significance of the beta-ureidopropionase deficiency in our patien

    Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: urinary organic acid profiles and expanded spectrum of mutations

    Get PDF
    Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase (HMCS2) deficiency results in episodes of hypoglycemia and increases in fatty acid metabolites. Metabolite abnormalities described to date in HMCS2 deficiency are nonspecific and overlap with other inborn errors of metabolism, making the biochemical diagnosis of HMCS2 deficiency difficult. Urinary organic acid profiles from periods of metabolic decompensation were studied in detail in HMCS2-deficient patients from four families. An additional six unrelated patients were identified from clinical presentation and/or qualitative identification of abnormal organic acids. The diagnosis was confirmed by sequencing and deletion/duplication analysis of the HMGCS2 gene. Seven related novel organic acids were identified in urine profiles. Five of them (3,5-dihydroxyhexanoic 1,5 lactone; trans-5-hydroxyhex-2-enoate; 4-hydroxy-6-methyl-2-pyrone; 5-hydroxy-3-ketohexanoate; 3,5-dihydroxyhexanoate) were identified by comparison with synthesized or commercial authentic compounds. We provisionally identified trans-3-hydroxyhex-4-enoate and 3-hydroxy-5-ketohexanoate by their mass spectral characteristics. These metabolites were found in samples taken during periods of decompensation and normalized when patients recovered. When cutoffs of adipic >200 and 4-hydroxy-6-methyl-2-pyrone >20 ÎĽmol/mmol creatinine were applied, all eight samples taken from five HMCS2-deficient patients during episodes of decompensation were flagged with a positive predictive value of 80% (95% confidence interval 35-100%). Some ketotic patients had increased 4-hydroxy-6-methyl-2-pyrone. Molecular studies identified a total of 12 novel mutations, including a large deletion of HMGCS2 exon 1 in two families, highlighting the need to perform quantitative gene analyses. There are now 26 known HMGCS2 mutations, which are reviewed in the text. 4-Hydroxy-6-methyl-2-pyrone and related metabolites are markers for HMCS2 deficiency. Detection of these metabolites will streamline the biochemical diagnosis of this disorder

    Successful Treatment of Molybdenum Cofactor Deficiency Type A With cPMP

    Get PDF
    Molybdenum cofactor deficiency (MoCD) is a rare metabolic disorder characterized by severe and rapidly progressive neurologic damage caused by the functional loss of sulfite oxidase, 1 of 4 molybdenum-dependent enzymes. To date, no effective therapy is available for MoCD, and death in early infancy has been the usual outcome. We report here the case of a patient whowas diagnosedwithMoCD at the age of 6 days. Substitution therapy with purified cyclic pyranopterin monophosphate (cPMP) was started on day 36 by daily intravenous administration of 80 to 160 g of cPMP/kg of body weight. Within 1 to 2 weeks, all urinary markers of sulfite oxidase (sulfite, S-sulfocysteine, thiosulfate) and xanthine oxidase deficiency (xanthine, uric acid) returned to almost normal readings and stayed constant (450 days of treatment). Clin-ically, the infant became more alert, convulsions and twitching disap-peared within the first 2 weeks, and an electroencephalogram showe

    A Korean Case of β-Ureidopropionase Deficiency Presenting with Intractable Seizure, Global Developmental Delay, and Microcephaly

    No full text
    β-Ureidopropionase deficiency (OMIM #613161) is a rare autosomal recessive inborn error of metabolism due to mutations in the UPB1 gene, which encodes the third enzyme involved in the pyrimidine degradation pathway. A total of 28 cases have been reported, mainly presenting with seizures, microcephaly, and intellectual disabilities. However, 11 of them were asymptomatic cases (Nakajima et al., J Inherit Metab Dis 37(5):801-812, 2014). We report on a 9-year-old female presenting with intractable epilepsy, microcephaly, and global developmental delay. She was homozygous for p.R326Q (c.977G>A) and heterozygous for p.G31S (c.91G>A) in the UPB1 gene, detected by targeted next-generation sequencing test and subsequently confirmed by biochemical analysis of urine, plasma, and cerebrospinal fluid (CSF) using reversed-phase HPLC, combined with electrospray tandem mass spectrometry. We report a first Korean female case with β-ureidopropionase deficienc

    Neuronal Ceroid Lipofuscinosis type 2: an Australian case series

    Get PDF
    AIM: Late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease is a rare neurodegenerative disorder presenting in children aged 2-4 years with seizures and loss of motor and language skills, followed by blindness and death in late childhood. Initial presenting features are similar to a range of common epilepsies. We aim to highlight typical clinical and radiological features that may prompt diagnosis of CLN2 disease in early disease stages. METHODS: We present a series of 13 Australian patients with CLN2 disease, describing clinical features, disease evolution, neuroimaging, electroencephalogram, biochemical and genetic results. Expert neuroradiological magnetic resonance imaging (MRI) analysis was retrospectively performed on 10 cases. RESULTS: Twelve patients presented with seizures, with initial seizures being focal (n = 4), generalised tonic-clonic (n = 3), absence (n = 3) and febrile (n = 2). Eleven patients (85%) had a language delay before the onset of seizures. Cerebellar or cerebral atrophy was noted in all patients on centralised MRI review, with abnormalities of the brain-stem, ventricles, corpus callosum and hippocampi. CONCLUSIONS: Early language delay with the onset of seizures at 2-4 years of age is the hallmark of CLN2 disease. MRI findings of early subtle atrophy in the cerebellum or posterior cortical regions should hasten testing for CLN2 disease to enable early initiation of enzyme replacement therapy
    corecore