72 research outputs found
Composite metamaterials with dual-band magnetic resonances in the terahertz frequency regime
Composite metamaterials(CMMs) combining a subwavelength metallic hole array
(i.e. one-layer fishnet structure) and an array of split-ring resonators(SRRs)
on the same board are fabricated with gold films on silicon wafer. Transmission
measurements of the CMMs in the terahertz range have been performed. Dual-band
magnetic resonances, namely, a LC resonance at 4.40 THz and an additional
magnetic resonance at 8.64 THz originating from the antiparallel current in
wire pairs in the CMMs are observed when the electrical field polarization of
the incident light is parallel to the gap of the component SRR. The numerical
simulations agree well with the experimental results and further clarify the
nature of the dual-band magnetic resonances.Comment: 4 figures, 14 page
NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration
<p>Abstract</p> <p>Background</p> <p>The phosphatase PTEN governs the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway which is arguably the most important pro-survival pathway in neurons. Recently, PTEN has also been implicated in multiple important CNS functions such as neuronal differentiation, plasticity, injury and drug addiction. It has been reported that loss of PTEN protein, accompanied by Akt activation, occurs under excitotoxic conditions (stroke) as well as in Alzheimer's (AD) brains. However the molecular signals and mechanism underlying PTEN loss are unknown.</p> <p>Results</p> <p>In this study, we investigated redox regulation of PTEN, namely S-nitrosylation, a covalent modification of cysteine residues by nitric oxide (NO), and H<sub>2</sub>O<sub>2</sub>-mediated oxidation. We found that S-nitrosylation of PTEN was markedly elevated in brains in the early stages of AD (MCI). Surprisingly, there was no increase in the H<sub>2</sub>O<sub>2</sub>-mediated oxidation of PTEN, a modification common in cancer cell types, in the MCI/AD brains as compared to normal aged control. Using several cultured neuronal models, we further demonstrate that S-nitrosylation, in conjunction with NO-mediated enhanced ubiquitination, regulates both the lipid phosphatase activity and protein stability of PTEN. S-nitrosylation and oxidation occur on overlapping and distinct Cys residues of PTEN. The NO signal induces PTEN protein degradation via the ubiquitin-proteasome system (UPS) through NEDD4-1-mediated ubiquitination.</p> <p>Conclusion</p> <p>This study demonstrates for the first time that NO-mediated redox regulation is the mechanism of PTEN protein degradation, which is distinguished from the H<sub>2</sub>O<sub>2</sub>-mediated PTEN oxidation, known to only inactivate the enzyme. This novel regulatory mechanism likely accounts for the PTEN loss observed in neurodegeneration such as in AD, in which NO plays a critical pathophysiological role.</p
Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer.
Whereas VHL inactivation is a primary event in clear cell renal cell carcinoma (ccRCC), the precise mechanism(s) of how this interacts with the secondary mutations in tumor suppressor genes, including PBRM1, KDM5C/JARID1C, SETD2, and/or BAP1, remains unclear. Gene expression analyses reveal that VHL, PBRM1, or KDM5C share a common regulation of interferon response expression signature. Loss of HIF2α, PBRM1, or KDM5C in VHL-/-cells reduces the expression of interferon stimulated gene factor 3 (ISGF3), a transcription factor that regulates the interferon signature. Moreover, loss of SETD2 or BAP1 also reduces the ISGF3 level. Finally, ISGF3 is strongly tumor-suppressive in a xenograft model as its loss significantly enhances tumor growth. Conversely, reactivation of ISGF3 retards tumor growth by PBRM1-deficient ccRCC cells. Thus after VHL inactivation, HIF induces ISGF3, which is reversed by the loss of secondary tumor suppressors, suggesting that this is a key negative feedback loop in ccRCC. © 2018, Liao et al
Cortico-basal ganglia networks dysfunction associated with disease severity in patients with idiopathic blepharospasm
BackgroundStructural changes occur in brain regions involved in cortico-basal ganglia networks in idiopathic blepharospasm (iBSP); whether these changes influence the function connectivity patterns of cortico-basal ganglia networks remains largely unknown. Therefore, we aimed to investigate the global integrative state and organization of functional connections of cortico-basal ganglia networks in patients with iBSP.MethodsResting-state functional magnetic resonance imaging data and clinical measurements were acquired from 62 patients with iBSP, 62 patients with hemifacial spasm (HFS), and 62 healthy controls (HCs). Topological parameters and functional connections of cortico-basal ganglia networks were evaluated and compared among the three groups. Correlation analyses were performed to explore the relationship between topological parameters and clinical measurements in patients with iBSP.ResultsWe found significantly increased global efficiency and decreased shortest path length and clustering coefficient of cortico-basal ganglia networks in patients with iBSP compared with HCs, however, such differences were not observed between patients with HFS and HCs. Further correlation analyses revealed that these parameters were significantly correlated with the severity of iBSP. At the regional level, the functional connectivity between the left orbitofrontal area and left primary somatosensory cortex and between the right anterior part of pallidum and right anterior part of dorsal anterior cingulate cortex was significantly decreased in patients with iBSP and HFS compared with HCs.ConclusionDysfunction of the cortico-basal ganglia networks occurs in patients with iBSP. The altered network metrics of cortico-basal ganglia networks might be served as quantitative markers for evaluation of the severity of iBSP
Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis
Interferon-beta (IFNβ) is used to inhibit disease activity in multiple sclerosis (MS), but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified.he relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70) or poor response (n = 15). Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs).The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual ‘IFN response fingerprint’. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections.MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients
- …