37 research outputs found
Effects of Sheep Sires on Muscle Fiber Characteristics, Fatty Acid Composition and Volatile Flavor Compounds in F1 Crossbred Lambs
Crossbreeding significantly improves meat production performance in sheep; however, whether hybridization changes the meat quality characteristics of lambs is uncertain. We analyzed the effects of three different hybrid sires on muscle fiber characteristics (MFCs), fatty acid composition (FAC), and volatile flavor compounds (VFCs) in lambs under identical feeding conditions. Compared with those of purebred lambs, the muscle fiber diameter and cross-sectional areas of the crossbred lambs were significantly decreased (p < 0.05), and the collagen fiber content was significantly increased (p < 0.05). The numbers and area ratios of the fast and slow muscle fibers did not significantly differ between the purebred and crossbred lambs, but the expressions of four MyHC gene types differed significantly (p < 0.05). Twenty-three fatty acids were identified in both the purebred and crossbred lambs, of which thirteen were differentially expressed (p < 0.05). Saturated fatty acid (SFA) contents in the crossbred lambs were significantly increased (p < 0.05), whereas the monounsaturated fatty acid content was significantly decreased (p < 0.05). Polyunsaturated fatty acid/SFA and n-6/n-3 ratios were significantly lower in the crossbred lambs than in the purebred lambs (p < 0.05). Twenty-five VFCs were identified among the three hybrids, and aldehydes were the main VFCs. Eleven VFCs were differentially expressed in the crossbred lambs (p < 0.05). Hybrid sires affected the MFCs, FAC, and VFCs of the F1 lambs, thus providing a reference for high-quality mutton production
Genomic Selection for Weaning Weight in Alpine Merino Sheep Based on GWAS Prior Marker Information
This study aims to compare the accuracy of genomic estimated breeding values (GEBV) estimated using a genomic best linear unbiased prediction (GBLUP) method and GEBV estimates incorporating prior marker information from a genome-wide association study (GWAS) for the weaning weight trait in highland Merino sheep. The objective is to provide theoretical and technical support for improving the accuracy of genomic selection. The study used a population of 1007 highland Merino ewes, with the weaning weight at 3 months as the target trait. The population was randomly divided into two groups. The first group was used for GWAS analysis to identify significant markers, and the top 5%, top 10%, top 15%, and top 20% markers were selected as prior marker information. The second group was used to estimate genetic parameters and compare the accuracy of GEBV predictions using different prior marker information. The accuracy was obtained using a five-fold cross-validation. Finally, both groups were subjected to cross-validation. The study’s findings revealed that the heritability of the weaning weight trait, as calculated using the GBLUP model, ranged from 0.122 to 0.394, with corresponding prediction accuracies falling between 0.075 and 0.228. By incorporating prior marker information from GWAS, the heritability was enhanced to a range of 0.125 to 0.407. The inclusion of the top 5% to top 20% significant SNPs from GWAS results as prior information into GS showed potential for improving the accuracy of predicting genomic breeding value
DIA-Based Proteomic Analysis Reveals MYOZ2 as a Key Protein Affecting Muscle Growth and Development in Hybrid Sheep
Hybridization of livestock can be used to improve varieties, and different hybrid combinations produce unique breeding effects. In this study, male Southdown and Suffolk sheep were selected to hybridize with female Hu sheep to explore the effects of male parentage on muscle growth and the development of offspring. Using data-independent acquisition technology, we identified 119, 187, and 26 differentially abundant proteins (DAPs) between Hu × Hu (HH) versus Southdown × Hu (NH), HH versus Suffolk × Hu (SH), and NH versus SH crosses. Two DAPs, MYOZ2 and MYOM3, were common to the three hybrid groups and were mainly enriched in muscle growth and development-related pathways. At the myoblast proliferation stage, MYOZ2 expression decreased cell viability and inhibited proliferation. At the myoblast differentiation stage, MYOZ2 expression promoted myoblast fusion and enhanced the level of cell fusion. These findings provide new insights into the key proteins and metabolic pathways involved in the effect of male parentage on muscle growth and the development of hybrid offspring in sheep
The complete mitochondrial genome sequence and phylogenetic analysis of Alpine Merino sheep (Ovis aries)
Alpine Merino sheep is one of the most important fine-wool sheep breeds in China. In this study, we present the complete mitogenome of Alpine Merino sheep for the first time. The genome has a length of 16,619bp, containing 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region (D-loop). Phylogenetically, the Alpine Merino sheep is closer to Oula Tibetan sheep and Tashkurgan sheep. This report provided new data for the phylogeny of Alpine Merino sheep
Genomic Selection for Live Weight in the 14th Month in Alpine Merino Sheep Combining GWAS Information
Alpine Merino Sheep is a novel breed reared from Australian Merino Sheep as the father and Gansu Alpine Fine-Wool Sheep as the mother, living all year in cold and arid alpine areas with exceptional wool quality and meat performance. Body weight is an important economic trait of the Alpine Merino Sheep, but there is limited research on identifying the genes associated with live weight in the 14th month for improving the accuracy of the genomic prediction of this trait. Therefore, this study’s sample comprised 1310 Alpine Merino Sheep ewes, and the Fine Wool Sheep 50K Panel was used for genome-wide association study (GWAS) analysis to identify candidate genes. Moreover, the trial population (1310 ewes) in this study was randomly divided into two groups. One group was used as the population for GWAS analysis and screened for the most significant top 5%, top 10%, top 15%, and top 20% SNPs to obtain prior marker information. The other group was used to estimate the genetic parameters based on the weight assigned by heritability combined with different prior marker information. The aim of this study was to compare the accuracy of genomic breeding value estimation when combined with prior marker information from GWAS analysis with the optimal linear unbiased prediction method for genome selection (GBLUP) for the breeding value of target traits. Finally, the accuracy was evaluated using the five-fold cross-validation method. This research provides theoretical and technical support to improve the accuracy of sheep genome selection and better guide breeding. The results demonstrated that eight candidate genes were associated with GWAS analysis, and the gene function query and literature search results suggested that FAM184B, NCAPG, MACF1, ANKRD44, DCAF16, FUK, LCORL, and SYN3 were candidate genes affecting live weight in the 14th month (WT), which regulated the growth of muscle and bone in sheep. In genome selection analysis, the heritability of GBLUP to calculate the WT was 0.335–0.374, the accuracy after five-fold cross-verification was 0.154–0.190, and after assigning different weights to the top 5%, top 10%, top 15%, and top 20% of the GWAS results in accordance with previous information to construct the G matrix, the accuracy of the WT in the GBLUP model was improved by 2.59–7.79%
Quantitative proteomic analysis identified differentially expressed proteins with tail/rump fat deposition in Chinese thin- and fat-tailed lambs.
Tail adipose as one of the important functional tissues can enhance hazardous environments tolerance for sheep. The objective of this study was to gain insight into the underlying development mechanisms of this trait. A quantitative analysis of protein abundance in ovine tail/rump adipose tissue was performed between Chinese local fat- (Kazakh, Hu and Lanzhou) and thin-tailed (Alpine Merino, Tibetan) sheep in the present study by using lable-free approach. Results showed that 3400 proteins were identified in the five breeds, and 804 were differentially expressed proteins, including 638 up regulated proteins and 83 down regulated proteins in the tail adipose tissues between fat- and thin-tailed sheep, and 8 clusters were distinguished for all the DEPs' expression patterns. The differentially expressed proteins are mainly associated with metabolism pathways and peroxisome proliferator activated receptor signaling pathway. Furthermore, the proteomics results were validated by quantitative real-time PCR and Western Blot. Our research has also suggested that the up-regulated proteins ACSL1, HSD17β4, FABP4 in the tail adipose tissue might contribute to tail fat deposition by facilitating the proliferation of adipocytes and fat accumulation in tail/rump of sheep. Particularly, FABP4 highly expressed in the fat-tail will play an important role for tail fat deposition. Our study might provide a novel view to understanding fat accumulation in special parts of the body in sheep and other animals
Genome-Wide Association Study of Body Weight Traits in Chinese Fine-Wool Sheep
Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep
Global DNA Methylation, miRNA, and mRNA Profiles in Sheep Skeletal Muscle Promoted by Hybridization
With the development of high-throughput sequencing technology,
several nongenetic variations, including noncoding RNAs such as miRNAs,
and DNA methylation, have been found to play an important role in
animal muscle development and fat metabolism. In this study, Southdown
and Suffolk were selected as male parents for hybridization with Hu
sheep (Southdown × Hu (NH), Suffolk × Hu (SH), and Hu ×
Hu (HH)). RNA sequencing, bisulfite sequencing, and small-RNA sequencing
were used to study the methylation patterns and differences in miRNA
and mRNA expression in the F1 sheep longissimus dorsi muscle tissue.
We identified 765 differentially expressed genes (DEGs), 10,161 differentially
methylated regions (DMRs), and 164 differentially expressed miRNAs,
which were significantly enriched in AMPK signaling, fatty acid degradation,
metabolism, and other related pathways (P < 0.05).
In addition, we constructed a DNA methylation-mRNA and miRNA–mRNA
coexpression network. A total of 42 common genes were identified from
DMRs and DEGs. Importantly, we predicted that 33 differentially expressed
miRNAs directly or indirectly targeted the SLC27A6. The data obtained in this study provide useful information and
evidence to support further understanding of the miRNA and DNA methylation
of key genes regulating muscle growth and fat metabolism in hybrid
sheep populations
The expression level of differently expressed genes and LncRNAs validated by strand-specific qPCR.
<p>The expression level of differently expressed genes and LncRNAs validated by strand-specific qPCR.</p