16 research outputs found

    A Case Study on Air Combat Decision Using Approximated Dynamic Programming

    Get PDF
    As a continuous state space problem, air combat is difficult to be resolved by traditional dynamic programming (DP) with discretized state space. The approximated dynamic programming (ADP) approach is studied in this paper to build a high performance decision model for air combat in 1 versus 1 scenario, in which the iterative process for policy improvement is replaced by mass sampling from history trajectories and utility function approximating, leading to high efficiency on policy improvement eventually. A continuous reward function is also constructed to better guide the plane to find its way to "winner" state from any initial situation. According to our experiments, the plane is more offensive when following policy derived from ADP approach other than the baseline Min-Max policy, in which the "time to win" is reduced greatly but the cumulated probability of being killed by enemy is higher. The reason is analyzed in this paper

    A Case Study on Air Combat Decision Using Approximated Dynamic Programming

    No full text
    As a continuous state space problem, air combat is difficult to be resolved by traditional dynamic programming (DP) with discretized state space. The approximated dynamic programming (ADP) approach is studied in this paper to build a high performance decision model for air combat in 1 versus 1 scenario, in which the iterative process for policy improvement is replaced by mass sampling from history trajectories and utility function approximating, leading to high efficiency on policy improvement eventually. A continuous reward function is also constructed to better guide the plane to find its way to “winner” state from any initial situation. According to our experiments, the plane is more offensive when following policy derived from ADP approach other than the baseline Min-Max policy, in which the “time to win” is reduced greatly but the cumulated probability of being killed by enemy is higher. The reason is analyzed in this paper

    Multi-Population Parallel Wolf Pack Algorithm for Task Assignment of UAV Swarm

    No full text
    The effectiveness of the Wolf Pack Algorithm (WPA) in high-dimensional discrete optimization problems has been verified in previous studies; however, it usually takes too long to obtain the best solution. This paper proposes the Multi-Population Parallel Wolf Pack Algorithm (MPPWPA), in which the size of the wolf population is reduced by dividing the population into multiple sub-populations that optimize independently at the same time. Using the approximate average division method, the population is divided into multiple equal mass sub-populations whose better individuals constitute an elite sub-population. Through the elite-mass population distribution, those better individuals are optimized twice by the elite sub-population and mass sub-populations, which can accelerate the convergence. In order to maintain the population diversity, population pretreatment is proposed. The sub-populations migrate according to a constant migration probability and the migration of sub-populations are equivalent to the re-division of the confluent population. Finally, the proposed algorithm is carried out in a synchronous parallel system. Through the simulation experiments on the task assignment of the UAV swarm in three scenarios whose dimensions of solution space are 8, 30 and 150, the MPPWPA is verified as being effective in improving the optimization performance

    Multi-Population Parallel Wolf Pack Algorithm for Task Assignment of UAV Swarm

    No full text
    The effectiveness of the Wolf Pack Algorithm (WPA) in high-dimensional discrete optimization problems has been verified in previous studies; however, it usually takes too long to obtain the best solution. This paper proposes the Multi-Population Parallel Wolf Pack Algorithm (MPPWPA), in which the size of the wolf population is reduced by dividing the population into multiple sub-populations that optimize independently at the same time. Using the approximate average division method, the population is divided into multiple equal mass sub-populations whose better individuals constitute an elite sub-population. Through the elite-mass population distribution, those better individuals are optimized twice by the elite sub-population and mass sub-populations, which can accelerate the convergence. In order to maintain the population diversity, population pretreatment is proposed. The sub-populations migrate according to a constant migration probability and the migration of sub-populations are equivalent to the re-division of the confluent population. Finally, the proposed algorithm is carried out in a synchronous parallel system. Through the simulation experiments on the task assignment of the UAV swarm in three scenarios whose dimensions of solution space are 8, 30 and 150, the MPPWPA is verified as being effective in improving the optimization performance

    Task Assignment of UAV Swarm Based on Wolf Pack Algorithm

    No full text
    To perform air missions with an unmanned aerial vehicle (UAV) swarm is a significant trend in warfare. The task assignment among the UAV swarm is one of the key issues in such missions. This paper proposes PSO-GA-DWPA (discrete wolf pack algorithm with the principles of particle swarm optimization and genetic algorithm) to solve the task assignment of a UAV swarm with fast convergence speed. The PSO-GA-DWPA is confirmed with three different ground-attack scenarios by experiments. The comparative results show that the improved algorithm not only converges faster than the original WPA and PSO, but it also exhibits excellent search quality in high-dimensional space

    Quantized State Based Simulation of Time Invariant and Time Varying Continuous Systems

    Get PDF
    Continuous system can be discretized for computer simulation. Quantized state systems (QSS) method has been used to discretize time invariant systems based on the discretization of the state space. A HLA based QSS method is proposed in this paper to address issues of real-time advancements in simulation and an aircraft control example was introduced to illustrate our method. Moreover, to simulate time varying systems, a novel approach is also proposed and exemplified with a practical case

    Factors associated with health literacy in rural areas of Central China: structural equation model

    No full text
    Abstract Background Health literacy is a strong predictor of health status. This study develops and tests a structural equation model to explore the factors that are associated with the health literacy level of rural residents in Central China. Methods The participants were recruited from a county-level city in Central China (N = 1164). Face-to-face interviews were conducted to complete the self-designed questionnaire of each participant. The questionnaire included items for the (1) demographic information, (2) socioeconomic status, and (3) health literacy of the participants. Mplus analyses were performed to evaluate the proposed model. Results The final model showed good fit for the data, and both demographic characteristics (i.e., age, BMI, and residence) and socioeconomic status (i.e., monthly income, occupation, and education level) were significantly associated with health literacy level. The effects of these two variables were − 0.277 (P < 0.05) and 0.615 (P < 0.001), respectively, and the model explained 70.2% of the variance in health literacy. Conclusions Health literacy was significantly associated with age, BMI, distance between residence and nearest medical institution, monthly income, occupation, and education level, whereas socioeconomic status was a dominant predictor of health literacy level. Targeting these factors might be helpful in allocating health resources rationally when performing health promotion work

    The Responses of the Lipoxygenase Gene Family to Salt and Drought Stress in Foxtail Millet (Setaria italica)

    No full text
    Plant lipoxygenases (LOXs), a kind of non-heme iron-containing dioxygenases, participate plant physiological activities (especially in response to biotic and abiotic stresses) through oxidizing various lipids. However, there was few investigations on LOXs in foxtail millet (Setaria italica). In this study, we identified the LOX gene family in foxtail millet, and divided the total 12 members into three sub-families on the basis of their phylogenetic relationships. Under salt and drought stress, LOX genes showed different expression patterns. Among them, only SiLOX7 showed up-regulated expression in Yugu1 (YG1) and Qinhuang2 (QH2), two stress-tolerant varieties, indicating that SiLOX7 may play an important role in responses to abiotic stress. Our research provides a basis for further investigation of the role of LOX genes in the adaptation to abiotic stresses and other possible biological functions in foxtail millet
    corecore