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As a continuous state space problem, air combat is difficult to be resolved by traditional dynamic programming (DP) with
discretized state space. The approximated dynamic programming (ADP) approach is studied in this paper to build a high
performance decision model for air combat in 1 versus 1 scenario, in which the iterative process for policy improvement is replaced
by mass sampling from history trajectories and utility function approximating, leading to high efficiency on policy improvement
eventually. A continuous reward function is also constructed to better guide the plane to find its way to “winner” state from any
initial situation. According to our experiments, the plane is more offensive when following policy derived from ADP approach
other than the baseline Min-Max policy, in which the “time to win” is reduced greatly but the cumulated probability of being killed
by enemy is higher. The reason is analyzed in this paper.

1. Introduction

Unmanned aerial vehicle (UAV) plays an important role in
modern battlefield. For the past decades, UAV has made
significant advancement on both hardware and software
and achieved mission capabilities including “simple” ones
like intelligence, surveillance, and reconnaissance (ISR),
and “complex” ones like electronic attack, ground targets
strike, suppression or destruction of enemy air defense
(SEAD/DEAD), and others. According to the development
roadmap [1] proposed by UAV technical leading countries,
even the mission of air combat, which has been believed to
be the dominated domain of human pilots due to the dynamic
and complexity on tactical decisions, is possible to be carried
out by autonomy UAV in the near future.

However, the decision technologies supporting automatic
air combat are far frommaturity.They are still on the way for
better robustness, intelligence, autonomy, team cooperation,
and adaption to complex environment. The methods applied
in this domain include game theory [2–4], knowledge-based
decision [5–9], graphic basedmethods like influence diagram
[10], and others. Dynamic programming (DP) [11] is one of
the most powerful methods for its adaptation to dynamic

environment and the capability to improve policy constantly
by learning [12]. However, traditional DP approach is not
suitable to resolve continuous state space problem like
air combat, in which the computation complex becomes
intractable because of the curse of dimensionality.

In this paper, a tactical decision framework employing 5
approximated dynamic programming (ADP)method [13–15]
is proposed for air combat mission.The trait of ADPmethod
is that the utility function is learned from mass sampled
states in problem space rather than from scratch, which lead
to high efficiency in policy converging. As the result, ADP
can be used as a second stage tool to improve the policy
derived from other decision systems (denoted by the “first
stage tool” for decision here), for example, a knowledge-based
system. If we treat the combat traces produced in the first
stage tool as the sampled states, then ADP algorithms can
learn its utility function and policy from these states directly.
Considering the optimizing capability of ADP inherited from
DP approach, the learned policy can be improved constantly
to achieve better decision performance. Thus, the merits of
different decision system are combined together.

The content of this paper would be arranged as follows.
In Section 2, the 1 versus 1 air combat problem is formulated
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Figure 1: The geometrical measures of the firing position.

with DP formation. In Section 3, the ADP method is briefly
reviewed. Section 4 discusses the reward function for air
combat, which is designed to guide the UAVs to enter into
goal states smoothly. Some features are also specified to gain
an insight of engagement situation. In Section 5, the key
algorithms of ADP decision framework are proposed. The
followed comparative experiments (Section 6) validate the
effectiveness of the proposed framework.

2. Problem Formulation

A 1 versus 1 air combat scenario involves two opponent planes
(denoted by red and blue, where the red is supposed to
be “my” side). Omitting vertical movement, the kinematic
equations of the plane are

̇
𝜓 =

𝑓

𝑛

V

𝑥̇ = V ⋅ cos (𝜓)

̇𝑦 = V ⋅ sin (𝜓) ,

(1)

where V is the scalar value of velocity, which is assumed to
be const during the combat. 𝜓 ∈ [−𝜋, 𝜋] is yaw angle and is
defined as the deviation of velocity from north (the 𝑦 axis).
𝜓 is controlled by 𝑓

𝑛
. 𝑓
𝑛
is plane’s normal overload, which

always points right from the gravity center of the plane and
is orthogonal to velocity. In our control schema, 𝑓

𝑛
can take

a value from three options once a time: {−3, 0, 3}. The plane
will turn counterclockwise, turn clockwise, and keep current
velocity direction, respectively, with these values.

The goal of the planes is to occupy advantage position by
tactical decision and gain the fire opportunities at its rival.
The state space of air combat can be described with vector

𝑥 = {𝑥

𝑟
, 𝑦

𝑟
, 𝜓

𝑟
, 𝑥

𝑏
, 𝑦

𝑏
, 𝜓

𝑏
} , (2)

where subscript 𝑟 and 𝑏 refer to red and blue, respectively.
Any state 𝑠 is an instance of 𝑥. With (1), the state transition in
combat space can be represented as a function

𝑠

󸀠

= 𝑓 (𝑠, 𝑎

𝑟
= 𝑓

1

𝑛
, 𝑎

𝑏
= 𝑓

2

𝑛
) (3)

which means the current state 𝑠 will transfer into a new state
𝑠

󸀠 after performing 𝑎

𝑟
and 𝑎

𝑏
.

The goal state is reached when one plane gains opportu-
nities to fire at its opponent. The firing position is defined by
three geometrical measures:

(a) |Aspect angle| < 𝜋/3. Aspect angle (AA) is a relative
angle between the longitudinal symmetry axis (to the
tail direction) of the target plane and the connecting
line from target plane’s tail to attacking plane’s nose.
|AA| < 𝜋/3 refers to area where the killing probability
is high when attacking from rear considering most
close-combat air missiles are infrared guidance;

(b) |Antenna train angle| < 𝜋/6. Antenna train angle
(ATA) is the angle between attacking plane’s longitu-
dinal symmetry axis and its radar’s line of sight (LOS),
as Figure 1 shows. This criterion defines an area from
which the target plane is difficult to escape with radar
locking.

(c) Relative range (𝑅) between two planes: this criterion
makes sure that the target plane is within the attacking
range of air-to-air weapon.

3. ADP Method Review

DP defines adaptive learning process and its mathematic
model isMarkov decision process (MDP). InDP formulation,
the air combat can be described as a discrete time decision
problem with five-tuples: {𝑆, 𝐴, 𝑃, 𝑅, 𝑈}:

(1) 𝑆 = {𝑠} is the problem space definedwith state variable
𝑥; 𝑠 is the instance of 𝑥;

(2) 𝐴(𝑠) is the finite action set available in state 𝑠, from
which the plane selects one to execute at each decision
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interval. In our problem, 𝐴(𝑠) is same for each state 𝑠

and thus can be simply denoted as 𝐴;

(3) 𝑃(𝑠

󸀠

| 𝑠, 𝑎) is the probability of transition from state 𝑠

to s󸀠;

(4) 𝑅(s) is the reward of state 𝑠. If 𝑠 is visited multiple
times during the combat, the rewards are discounted
cumulated to form utility value of that state;

(5) 𝑈(𝑠) is the utility of state 𝑠. Its value is the cumulated
rewards of multiple visiting. If every state is visited
adequate times, the utility distribution will converge
to the optimal one, by which the optimal policy is
derived.

The decision process starts from an initial state 𝑠

0
and

then selects action to perform. The action interacts the
environment and leads to a new state, and so on. Then, the
utility of the starting state is the expectation of discounted
cumulated rewards on all states following the start one:

𝑈 (𝑠)

= 𝐸 {𝑅 (𝑠

0
) + 𝛾 ⋅ 𝑅 (𝑠

1
) + 𝛾

2

⋅ 𝑅 (𝑠

2
) + ⋅ ⋅ ⋅ | 𝑠 = 𝑠

0
, 𝜋 (𝑠)} ,

(4)

where 𝛾 ∈ (0, 1) is the discounted coefficient, making sure
𝑈(𝑠) converges eventually. Policy 𝜋(𝑠) → 𝑎 is a mapping
from state space to action space. For a fixed policy 𝜋, the
utility satisfies Bellman equation

𝑈 (𝑠) = ∑

𝑠
󸀠

𝑃 (𝑠, 𝜋 (𝑠) , 𝑠

󸀠
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󸀠

)] .

(5)

The optimal utility 𝑈

∗ is the value function that simul-
taneously maximizes the expected cumulative reward in all
states 𝑠 ∈ 𝑆. Bellman proved that𝑈∗ is the unique solution of
(5):

𝑈

∗
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(6)

Actually, 𝑈

∗ can be obtained through iterations on
Bellman equation:

𝑈
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(𝑠)
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𝑘
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(7)

𝑇 is denoted by Bellman operator, representing the iterative
improvement on 𝑈 by traversing states throughout the
space eventually. During this process, 𝑃(𝑠, 𝑎, 𝑠

󸀠

) would also

converge to its “true” distribution. Then, the optimal policy
can be derived:
𝜋

∗

(𝑠)

= argmax
𝑎

{∑

𝑠
󸀠

𝑃 (𝑠, 𝑎, 𝑠
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) ⋅ [𝑅 (𝑠
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∗

(𝑠

󸀠

)]} .

(8)

As we can see from (4)–(8), traditional DPmethod needs
to traverse discrete states iteratively, resulting in tabular utility
function. This approach is not suitable to resolve continuous
state space problem.Discretization on state space leads to two
defects: (i) the unreasonable assuming that utility function
is const in each discrete state cell and (ii) the curse of
dimensionality.

ADP method mitigates these problems with two opera-
tions: (i) samplingmass states effectively fromproblem space,
thus reducing the consumed time on space exploration;
(ii) approximating state utility ̃

𝑈 using sampled states, with
which the near-optimal policy, rather than the optimal one, is
employed to determine actions. Denoting the sampled states
as a set 𝑆 = {𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑚
}, we have
̃

𝑈

𝑘+1

= 𝑇

̂

𝑈

𝑘

,
(9)

where ̂

𝑈

𝑘 is the current approximation of utility; ̃𝑈𝑘+1 is one
Bellman iteration from ̂

𝑈

𝑘. Then, ̂𝑈𝑘+1 can be approximated
based on ̃

𝑈

𝑘+1. There are multiple options for approximation
operation [16, 17]; the least squares approximation is used
here:

𝛽

𝑘+1

= (𝑆

𝑇

𝑆)

−1

⋅

̃

𝑈

𝑘+1

,

̂

𝑈

𝑘+1

= 𝑆 ⋅ 𝛽

𝑘+1

,

(10)

where 𝛽 is approximation coefficients vector and 𝑆 is sampled
states set. Normally, a set of features need to be defined to
gain an insight on characteristics of the studied problem.The
approximated utility functionwill convergemore quickly and
bemore precise since these features come frompilots’ combat
experiences in real world. We have

Φ (𝑆) = {𝜙

1
(𝑆) , . . . , 𝜙

𝑐
(𝑆)} ,

𝛽

𝑘+1

= (Φ

𝑇

Φ)

−1

⋅

̃

𝑈

𝑘+1

,

̂

𝑈

𝑘+1

= Φ ⋅ 𝛽

𝑘+1

.

(11)

Φ is feature vector.
As a conclusion, the steps of ADP method can be briefly

listed as follows:
(a) to sample states set 𝑆 in problem space;
(b) to get the one iteration improvement utility ̃

𝑈

𝑘+1 from
current utility ̂

𝑈

𝑘; the initial value of ̂𝑈𝑘 can be set as
the reward of initial states; that is, ̂𝑈0 = 𝑅(𝑆

0
), where

𝑆

0
is initial state set;

(c) to update the next value of approximated utility ̂

𝑈

𝑘+1

following (10) and (11);
(d) if the policy still needs to be improved, go back to (a).
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ADP Learn()
Input variables:
(1) 𝑆: sampled states set;
(2) 𝑁: the number of learning round.
(3) 𝜋

mm
(𝑆): blue plane’s policy derived fromMin-Max approach.

Output variables:
(1) ̂

𝑈

𝑘: utility function approximated.
Local variables:
(2) 𝐴

𝑏
: action vector of blue plane derived fromMin-Max policy;

(3) 𝐴

𝑟
: action vector of red plane derived from current utility;

(4) ̃

𝑈

𝑘: one step improved utility function by Bellman iteration;
(5) Φ: features vector used to compute approximation coefficients;
(6) 𝛽

𝑘: vector of approximation coefficients.
Code:
(1) ̂

𝑈

𝑘=0

= 𝑅(𝑆);
(2) FOR 𝑘 = 1 : 𝑁, DO:
(3) 𝐴

𝑏
= 𝜋

mm
(𝑆);

(4) {𝐴

𝑟
,

̃

𝑈

𝑘

} =

(5) argmax
𝐴

{𝜆 ⋅

̂

𝑈

𝑘−1

(𝑓 (𝑆, 𝐴, 𝐴

𝑏
)) + 𝑅 (𝑓 (𝑆, 𝐴, 𝐴

𝑏
))};

(6) Φ(𝑆) = {𝜙

1
(𝑆) , 𝜙

2
(𝑆) , . . .}

(7) 𝛽

𝑘

= (Φ

𝑇

Φ)

−1

Φ

𝑇

⋅

̃

𝑈

𝑘

(8) ̂

𝑈

𝑘

= Φ ⋅ 𝛽

𝑘

(9) END
(10) RETURN ̂

𝑈

𝑘=𝑁;

Algorithm 1: Utility function approximating based on sampled states.

Rollout ADP Policy()
Input variables:
(1) 𝑠: the current state;
(2) 𝑁roll: the number of rollout steps;
(3) ̂

𝑈

𝑘=𝑁: utility function approximated in ADP Learn algorithm;
(4) 𝜋

appx
(𝑠): red plane’s policy derived from ̂

𝑈

𝑘=𝑁, see (8).
Output variables:
(1) 𝑎best: the best action respect to current state 𝑠.
Local variables:
(1) 𝑈best: to cache the maximum utility responding to different actions;
(2) 𝑠

󸀠: the cache the next state computed by system equation.
Code:
(1) 𝑎best = 𝑁𝑈𝐿𝐿;
(2) 𝑈best = 𝑁𝑈𝐿𝐿;
(3) FOR 𝑎

𝑟
= {−3, 0, 3}, DO:

(4) 𝑠

󸀠

= 𝑓(𝑠, 𝑎

𝑟
, 𝜋

mm
(𝑠));

(5) FOR 𝑖 = 1 : 𝑁roll, DO:
(6) 𝑠

󸀠

← 𝑓(𝑠

󸀠

, 𝜋

appx
(𝑠

󸀠

), 𝜋

mm
(𝑠

󸀠

));
(7) END
(8) IF {𝛾 ⋅

̂

𝑈

𝑘=𝑁

(𝑠

󸀠

) + 𝑅(𝑠

󸀠

)} > 𝑈best, THEN:
(9) 𝑈best = 𝛾 ⋅

̂

𝑈

𝑘=𝑁

(𝑠

󸀠

) + 𝑅(𝑠

󸀠

);
(10) 𝑎best = 𝑎

𝑟
;

(11) END
(12) END
(13) RETURN 𝑎best;

Algorithm 2: Rollout decision procedure using approximated utility function.
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Figure 2: Four basic initial situations in air combat.

4. Reward Function and Combat Features

Before giving ADP algorithm, the reward function𝑅(𝑠) needs
to be discussed firstly since it is a necessary part in ADP steps.
As (4) shows, the utility is actually the discounted cumulated
𝑅(𝑠) along state trace.Thus, a properly defined𝑅(𝑠) can better
guide plane approach to goal state from any starting state.

The computation of 𝑅(𝑠) is domain related. As for our
scenario, the attacking plane in its goal state gets reward +1,
and the target plane in the same state gets −1 as punishment.
The reward in other states is 0. Intuitively, with these discrete
rewards, the planes will spend more time on space explo-
ration to find trace from starting state to goal state. To better
guide the plane, a reward function is defined as

𝑅

󸀠

= [

(1 − |AA| /𝜋) + (1 − |ATA| /𝜋)

2

] 𝑒

−((|𝑅|−𝑅
𝐷
)/(𝜋⋅𝑘))

,

(12)

where 𝑅

𝐷
is the expected attacking range of weapons, 𝑅 is

the relative distance between planes, and 𝑘 is an coefficient
adjusting the influence of 𝑅 in total reward.

With (12), the plane occupying firing position (AA = 0,
ATA = 0, and 𝑅 = 𝑅

𝐷
) gets reward 𝑅

󸀠

= 1; the plane
under attack (AA = 𝜋, ATA = 𝜋, and 𝑅 = 𝑅

𝐷
) gets

reward 𝑅

󸀠

= 0. In other states, the reward will increase
continuously and monotonically from the worst state to the
most advantage state. To emphasize the punishment in bad
state (the punishment will guide planes to avoid these states),
a simple linear transformation is applied to 𝑅

󸀠 to get the final
reward function:

𝑅 (𝑠) = 2 ⋅ 𝑅

󸀠

− 1. (13)

To construct the utility function, some geometric features
[18] are specially defined to describe combat situation, as
Table 1 shows. These feature are optional for utility approx-
imation in ADP steps because we can use sampled states
instead, as (10) shows. However, they are more straightfor-
ward to capture the “true” utility of states, and that is why
human pilots also use them to judge their situations in real-
world combat. In other words, these well-defined features are
more representative to approximate utility function.

5. Method

In the combat scenario, the red plane is marked as “my”
side, and the blue one is marked as enemy. To describe

Table 1: Features evaluating combat situation.

Features (Φ) Description
𝑅 Relative distance between red and blue planes.
AA Aspect angle. Reference is Figure 1.

̇AA The changing ratio of AA.
|AA| Absolute value of AA.
ATA Antenna Train angle.
|ATA| Absolute value of ATA.

̇ATA The changing ratio of ATA.
𝐻𝐶𝐴 The error on yaw angle of both planes.
|𝐻𝐶𝐴| Absolute value of𝐻𝐶𝐴.

ADP approach, a reference decision algorithm, the Min-
Max search algorithm [19] is employed here. The Min-
Max algorithm looks into future for 𝑛 steps, using domain
knowledge to determine the acting consequent before giving
final decision.

ADP approach involves two algorithms: (i) the learn-
ing algorithm (ADP Learn()), in which the utility func-
tion is approximated, and (ii) the decision algorithm (Roll-
out ADP Policy()), in which the final action is determined
based on ADP policy derived from learned utility. The
ADP Learn() algorithm is displayed in Algorithm 1.

In ADP Learn(), the utility function is approximated
with sampled states, which is expected to be sampled from
frequently visited space, to fully capture the changes on utility
values in these areas. An option is to use the trajectories pro-
duced in real-world combat or other authoritative decision
tools for air combat, since the trajectories themselves indicate
the high probability of being visited in combat. In this paper,
a scenario is built to get combat trajectories, where two rival
planes all take Min-Max policies, and their trajectories are
recorded as 𝑆

0
.

The initial value of ̂

𝑈

𝑘 is assigned as the reward of 𝑆

0

(line 1 in Code section) and then is improved 𝑁 rounds. In
each round, firstly, the blue plane’s action 𝐴

𝑏
is determined

by Min-Max policy (line 3). Secondly, the red plane’s action
𝐴

𝑟
is selected by applying one step Bellman operator. The

changed utility ̃

𝑈

𝑘 is also recorded (lines 4-5) for further use.
Thirdly, the feature vector is updated (line 6), with which the
least squares approximation is performed to approximate ̂

𝑈

𝑘

according to ̃

𝑈

𝑘 (lines 7-8).
The approximated utility function ̂

𝑈

𝑘=𝑁 returned by
ADP Learn() already can be used to give decisions, as (8)
shows. However, a rollout procedure is employed here to
further improve the quality of final decisions, as Algorithm 2
shows.

Assuming the red plane is making decision in Roll-
out ADP Policy(). It will not follow ADP policy directly. On
the contrary, it tries each possible action (line 1 in Code
section). For each possible action, the red plane’s future state
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Figure 3: Baseline experiment: combat start from Setup 4. Both red and blue follow Min-Max policies. The plane icons appear at the start
position in each subfigure; the 𝑥, 𝑦 positions (denoted as Pos-𝑥 and Pos-𝑦) are scaled down for better representation. The red plane wins at
last and TTW = 23 s.

(𝑠󸀠) is rolled out for 𝑁roll steps (lines 5–7). The red plane
follows ADP policy during this process and the blue one
follows Min-Max policy. The sum of reward and utility of
𝑠

󸀠 is compared with the historical best value 𝑈best: if the

former is bigger than 𝑈best, then update 𝑈best and record the
corresponding best action 𝑎best (lines 8–11). Having tried all
possible actions, the red plane gets the best action 𝑎best in state
𝑠.
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Table 2: Four initial setups of air combat.

Initial situation Description 𝑥

𝑏
𝑦

𝑏
𝜓

𝑏
𝑥

𝑟
𝑦

𝑟
𝜓

𝑟

Setup 1 Offensive 0 −2.5 0 0 0 0
Setup 2 Neutral 2.75 0 −𝜋/10 0 0 0
Setup 3 Defensive 0 0 0 0 −4 0
Setup 4 Confronting 0 −4 0 0 0 𝜋

5

4

3

2

1

0

−1
−1 0 1 2 3 4 5

0 s–4.5 s

My plane

Enemy

Po
s-
y

Pos-x

Figure 4: Engagement process starts from Setup 1 with red plane
following ADP policy 𝜋

𝑘=40

𝑟
and blue plane following 𝜋

mm
𝑏

. TTW =
4.5 s.

6. Simulation and Analysis

The initial state of 1 versus 1 air combat can be classified into
4 basic situations (from red plane’s perspective): offensive,
neutral, defensive, and confronting, as Figure 2 shows.

In our experiments, all four initial situations are config-
ured (Table 2) to compare the performance of ADP policy
and Min-Max policy.

The experiments are arranged as follows. Firstly, a base-
line experiment is conducted in which both red and blue
plane would take Min-Max policy (denoted as 𝜋

mm). The
decision performance of 𝜋

mm is treated as the baseline to
compare ADP policy.

Secondly, the learned ADP policy is applied with same
initial situations. ADP policy is denoted as 𝜋

𝑘=𝑁, where 𝑁

is the learning rounds. For example, 𝜋𝑘=40 means this policy
is approximated after 40 rounds. The decision performance
is measured with 2 metrics: (a) the average time to win
(TTW); thewinning states have been defined in Section 2; the
attacking plane needs to hold that state for at least 10 seconds
to win; (b) the accumulated probability of being killed (APK);
this indicates the total risks of one plane during the combat,
in which the probability of being killed by enemy would be
cumulated. A good policy would result in both small TTW
and APK.

−1 0 1 2 3 4

My planeEnemy
Po

s-
y

Pos-x

0 s–3.25 s
4

3.5

3

2.5

2

1.5

1

0.5

0

−0.5

−1

Figure 5: Engagement process starts from Setup 2 with red plane
following ADP policy 𝜋

𝑘=40

𝑟
and blue plane following 𝜋

mm
𝑏

. TTW =
3.25 s.

To speed up the experiment, a bigger 𝑓

𝑛
is assigned

to red plane which means it can change direction more
quickly. This measurement would avoid long time standoff
when both planes follow the same policy. This performance
advantage will not influence policy comparison since both set
experiments use the same configured planes.

The baseline experiments are conducted firstly. Only the
result of Setup 4 (confront) is displayed here considering the
paper space limitation, as Figure 3 shows.

Figures 4, 5, 6, and 7 show the result of each initial setup
where red plane follows ADP policy and blue plane follows
Min-Max policy. Comparing Figures 7 and 3, we can see the
performance of red plane is improved greatly by taking ADP
policy, in which the TTW is reduced from 23 s to 10.5 s.

The comparison on decision performance is displayed
in Table 3. As we can see, the TTW of 𝜋

𝑘=40

𝑟
is reduced

in all setups compared to 𝜋

mm
𝑟

, especially in Setup 3. This
means 𝜋

𝑘=40

𝑟
can guide the red plane to get rid of the

chasing quickly and find its way to occupy the firing position.
On the other hand, the APK is slightly higher with ADP
policy.

These results show that a plane is more offensive when
following ADP policy. The plane is likely to occupy firing
position risk at the risk of being killed.This phenomenon can
be explained from the working mechanism of two decision
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Figure 6: Engagement process starts from Setup 3 with red plane following 𝜋

𝑘=40

𝑟
and blue plane following 𝜋

mm
𝑏

. TTW = 12.5 s.

approaches. In Min-Max algorithm, the decision is finally
made considering each possible reaction from the opponent.
This leads to a conservative style in decision making. By
contrast, the ADP approach uses utility to guide the plane
to make best profit by acting properly and avoid punishment
at the same time. This somehow makes the plane abandon
conservative choice for high reward in the future. This result

also proved that ADP approach is effective and of high
performance to resolve air combat problem

7. Conclusion

This paper studied the 1 versus 1 air combat decision problem
and employed ADP approach to resolve it quickly and
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Figure 7: An engagement starts from Setup 4 with red plane following ADP policy 𝜋
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𝑟
and blue plane following 𝜋

mm
𝑏

. TTW = 9.5 s.

Table 3: Comparison on performance of different policies.

Initial
setup

TTW (s) APK
1 2 3 4 1 2 3 4

𝜋

mm
𝑟

134 39 72 23 0.108 0 0 0
𝜋

𝑘=40

𝑟
4.5 3.25 12.5 9.5 0.139 0 0.0179 0.047

effectively. The ADP approach involves two operations: (i)
learning utility function from mass sampled states rather
than from scratch; (ii) making final decision by evaluating
the future incoming of any possible action. Comparative
experiments show that the policy initially produced by Min-
Max algorithm is improved greatly after ADP process.

In the future work, we plan to build a hybrid-decision
framework for UAV in which the decision functionality
is divided into two parts. The first part is responsible for
making initial acting policy for specific task, which is a
knowledge-based decision module, and can handle large
scale, complex task environment.The second part is the ADP
module proposed in this paper. This ADP module gets state
samples from the first part, with which the utility function is
approximated and the acting policy is improved.This process

combines the advantages of different decision frameworks
together.
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