1,595 research outputs found

    Millennials' Retirement Saving Behavior: Account Ownership and Balance

    Get PDF
    Postprint. Original article in Family and Consumer Sciences Research Journal, Volume 46, Issue 2, p. 110-128.Millennials is the largest population in the United States. Compared with their parents and grandparents, they have to shoulder more responsibilities to prepare financially for retirement. It is critical for Millennials to begin saving and investing for their retirements early in their careers. Few studies analyzed this generation’s retirement saving behavior. Using data from the 2013 Survey of Consumer Finances, this study is among the first ones to examine the state of Millennials’ retirement savings, including retirement account ownership and balance. Results show that only 37.2% of Millennials had any kind of account earmarked for retirement; and among those with a retirement account, the average accumulated amount was $21,333. Factors that affected retirement saving behavior included age; education; total household income and assets; job tenure; self-employment; having a retirement saving motive; having a defined benefit plan; overspending; and risk tolerance. This study provided initial insights that can help financial planners and educators, as well as policymakers understand Millennials’ current retirement savings behavior and help them achieve a financially comfortable retirement."This work was supported by the United States Department of Agriculture (USDA) National Institute of Food and Agriculture [Hatch project #1002789]."Authors' Note: Rui Yao, PhD, CFP, is an Associate Professor in the Department of Personal Financial Planning, University of Missouri. Guopeng Cheng, PhD candidate at Department of Personal Financial Planning, University of Missouri.Includes bibliographical references

    Advances in pharmacological studies of silymarin

    Full text link
    Silymarin is the flavonoids extracted from the seeds of Silybum marianum (L) Gearth as a mixture of three structural isomers: silybin, silydianin and silychristin, the former being the most active component. Silymarin protects liver cell membrane against hepatotoxic agents and improves liver function in experimental animals and humans. It is generally accepted that silymarin exerts a membrane-stabilizing action preventing or inhibiting membrane peroxidation. The experiments with soybean lipoxygenase showed that the three components of silymarin brought about a concentration-dependent non-competitive inhibition of the lipoxygenase. The experiments also showed an analogous interaction with animal lipoxygenase, thus showing that an inhibition of the peroxidation of the fatty acid in vivo was self-evident. Silybin almost completely suppressed the formation of PG at the highest concentration (0.3 mM) and proved to be an inhibitor of PG synthesis in vitro. In our experiments, silybin at lower dose (65 mg/Kg) decreased liver lipoperoxide content and microsomal lipoperoxidation to 84.5% and 68.55% of those of the scalded control rats respectively, and prevented the decrease of liver microsomal cytochrome p-450 content and p-nitroanisole-0-demethylase activity 24 h post-scalding. Effects of silymarin on cardiovascular systen have been studied in this university since 1980. O. O silymarin 800 mg/Kg/d or silybin 600 mg/Kg/d reduced plasma total cholesterol, LDL-C and VLDL-C. They however, enhanced HDL-C in hyperlipenic rats. Further studies showed that silymarin enhanced HDL-C in hyperlipemic rats. Further studies showed that silymarin enhanced HDL-C but didn't affect HDL-C, a property of this component which is beneficial to treatment of atherosclerosis. The results showed silymarin 80 mg or silybin 60 mg decreased in vitro platelet aggregation (porcentagem) in rats. The maximal platelet aggregation induced by ADP declined significantly, and time to reach maximal platelet aggregation and five-minute disaggregation didn't change. In our experiments, iv silybin 22,4 mg/kg lowered the amplitude and duration of diastolic blood pressure (DBP) more than those of systolic (SBP), but the descending aortic blood flow, cardiac contractility and ECG did not change significantly in anesthetized open-chest cats. The results indicated a reduction of peripheral resistance and dilatatory action on the resistant blood vessels. These effects are beneficial to coronary heart disease. We also observed the effects of silybin on morphological change, the release of glutamic oxaloacetate aminotrasferase (GOT) and lactate dehydrogenase (LDH) as well as the radioactivity of 3H-TdR incorporated into DNA in normal cardiac cells and cells infected by coxsackie B5, virus os newborn rats. The results showed that silynin did not affect the morphology of normal cell, and that the pathological change of cells infected by virus was delayed and reduced as compared to control. We have investigated the effect of silybin on synthesis and release of LTs in the cultured porcine cerebral basilar arteries (PCBA). Silybin 100 and 500 µmol/L declined the amounts of LTs released from the PCBA incubsated in the presence of A 23187, AA and indomenthacin. The result suggests that silybin can inhibit the activity of 5-lipoxygenase of cerebral blood vessel and may protect the brain from ischemia

    Measuring the boundary gapless state and criticality via disorder operator

    Full text link
    The disorder operator is often designed to reveal the conformal field theory (CFT) information in the quantum many-body system. By using large-scale quantum Monte Carlo simulation, we study the scaling behavior of disorder operator on the boundary in the two-dimensional Heisenberg model on the square-octagon lattice with gapless topological edge state. In the Affleck-Kennedy-Lieb-Tasaki (AKLT) phase, the disorder operator is shown to hold the perimeter scaling with a logarithmic term associated with the Luttinger Liquid parameter K. This effective Luttinger Liquid parameter K reflects the low energy physics and CFT for (1+1)d boundary. At bulk critical point, the effective K is suppressed but keep finite value, indicating the coupling between the gapless edge state and bulk fluctuation. The logarithmic term numerically capture this coupling picture, which reveals the (1+1)d SU(2)_1 CFT and (2+1)d O(3) CFT at boundary criticality. Our work paves a new way to study the exotic boundary state and boundary criticality.Comment: 8 Pages,7 figure

    Electronic Structures of Graphene Layers on Metal Foil: Effect of Point Defects

    Full text link
    Here we report a facile method to generate a high density of point defects in graphene on metal foil and show how the point defects affect the electronic structures of graphene layers. Our scanning tunneling microscopy (STM) measurements, complemented by first principle calculations, reveal that the point defects result in both the intervalley and intravalley scattering of graphene. The Fermi velocity is reduced in the vicinity area of the defect due to the enhanced scattering. Additionally, our analysis further points out that periodic point defects can tailor the electronic properties of graphene by introducing a significant bandgap, which opens an avenue towards all-graphene electronics.Comment: 4 figure

    Graphite Nanoeraser

    Full text link
    We present here a method for cleaning intermediate-size (5~50nm) contamination from highly oriented pyrolytic graphite. Electron beam deposition causes a continuous increase of carbonaceous material on graphene and graphite surfaces, which is difficult to remove by conventional techniques. Direct mechanical wiping using a graphite nanoeraser is observed to drastically reduce the amount of contamination. After the mechanical removal of contamination, the graphite surfaces were able to self-retract after shearing, indicating that van der Waals contact bonding is restored. Since contact bonding provides an indication of a level of cleanliness normally only attainable in a high-quality clean-room, we discuss potential applications in preparation of ultraclean surfaces.Comment: 10 pages, two figure
    • …
    corecore