We present here a method for cleaning intermediate-size (5~50nm)
contamination from highly oriented pyrolytic graphite. Electron beam deposition
causes a continuous increase of carbonaceous material on graphene and graphite
surfaces, which is difficult to remove by conventional techniques. Direct
mechanical wiping using a graphite nanoeraser is observed to drastically reduce
the amount of contamination. After the mechanical removal of contamination, the
graphite surfaces were able to self-retract after shearing, indicating that van
der Waals contact bonding is restored. Since contact bonding provides an
indication of a level of cleanliness normally only attainable in a high-quality
clean-room, we discuss potential applications in preparation of ultraclean
surfaces.Comment: 10 pages, two figure