22,889 research outputs found

    Does a proton "bubble" structure exist in the low-lying states of 34Si?

    Full text link
    The possible existence of a "bubble" structure in the proton density of 34^{34}Si has recently attracted a lot of research interest. To examine the existence of the "bubble" structure in low-lying states, we establish a relativistic version of configuration mixing of both particle number and angular momentum projected quadrupole deformed mean-field states and apply this state-of-the-art beyond relativistic mean-field method to study the density distribution of the low-lying states in 34^{34}Si. An excellent agreement with the data of low-spin spectrum and electric multipole transition strengths is achieved without introducing any parameters. We find that the central depression in the proton density is quenched by dynamic quadrupole shape fluctuation, but not as significantly as what has been found in a beyond non-relativistic mean-field study. Our results suggest that the existence of proton "bubble" structure in the low-lying excited 02+0^+_2 and 21+2^+_1 states is very unlikely.Comment: 6 pages, 8 figures and 1 table, accepted for publication in Physics Letters

    New parametrization for the nuclear covariant energy density functional with point-coupling interaction

    Full text link
    A new parametrization PC-PK1 for the nuclear covariant energy density functional with nonlinear point-coupling interaction is proposed by fitting to observables for 60 selected spherical nuclei, including the binding energies, charge radii and empirical pairing gaps. The success of PC-PK1 is illustrated in its description for infinite nuclear matter and finite nuclei including the ground-state and low-lying excited states. Particularly, PC-PK1 improves the description for isospin dependence of binding energy along either the isotopic or the isotonic chains, which makes it more reliable for application in exotic nuclei. The predictive power of PC-PK1 is also illustrated for the nuclear low-lying excitation states in a five-dimensional collective Hamiltonian in which the parameters are determined by constrained calculations for triaxial shapes.Comment: 32 pages, 12 figures, 4 tables, accepted by Phys. Rev.

    Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N\approx60

    Full text link
    The shape evolution and shape coexistence phenomena in neutron-rich nuclei at N60N\approx60, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are treated using the BCS approximation with a separable pairing force. Sharp rising in the charge radii of Sr and Zr isotopes at N=60 is observed and shown to be related to the rapid changing in nuclear shapes. The shape evolution is moderate in neighboring Kr and Mo isotopes. Similar as the results of previous Hartree-Fock-Bogogliubov (HFB) calculations with the Gogny force, triaxiality is observed in Mo isotopes and shown to be essential to reproduce quantitatively the corresponding charge radii. In addition, the coexistence of prolate and oblate shapes is found in both 98^{98}Sr and 100^{100}Zr. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi surfaces of neutron and proton respectively. Furthermore, the 5-dimensional (5D) collective Hamiltonian determined by the calculations of the PC-PK1 energy functional is solved for 98^{98}Sr and 100^{100}Zr. The resultant excitation energy of 02+0^+_2 state and E0 transition strength ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) are in rather good agreement with the data. It is found that the lower barrier height separating the two competing minima along the γ\gamma deformation in 100^{100}Zr gives rise to the larger ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) than that in 98^{98}Sr.Comment: 1 table, 11 figures, 23 page

    Anatomy of molecular structures in 20^{20}Ne

    Full text link
    We present a beyond mean-field study of clusters and molecular structures in low-spin states of 20^{20}Ne with a multireference relativistic energy density functional, where the dynamical correlation effects of symmetry restoration and quadrupole-octupole shapes fluctuation are taken into account with projections on parity, particle number and angular momentum in the framework of the generator coordinate method. Both the energy spectrum and the electric multipole transition strengths for low-lying parity-doublet bands are better reproduced after taking into account the dynamical octupole vibration effect. Consistent with the finding in previous studies, a rotation-induced dissolution of the α+16\alpha+^{16}O molecular structure in 20^{20}Ne is predicted.Comment: 6 pages with 6 figures, version to be published in Phys. Lett.

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    An efficient method for computing the Thouless-Valatin inertia parameters

    Get PDF
    Starting from the adiabatic time-dependent Hartree-Fock approximation (ATDHF), we propose an efficient method to calculate the Thouless-Valatin moments of inertia for the nuclear system. The method is based on the rapid convergence of the expansion of the inertia matrix. The accuracy of the proposed method is verified in the rotational case by comparing the results with the exact Thouless-Valatin moments of inertia calculated using the self-consistent cranking model. The proposed method is computationally much more efficient than the full ATDHF calculation, yet it retains a high accuracy of the order of 1%.Comment: 16 pages, 3 figure

    Rapid structural change in low-lying states of neutron-rich Sr and Zr isotopes

    Full text link
    The rapid structural change in low-lying collective excitation states of neutron-rich Sr and Zr isotopes is tudied by solving a five-dimensional collective Hamiltonian with parameters determined by both relativistic mean-field and non-relativistic Skyrme-Hartree-Fock calculations using the PC-PK1 and SLy4 forces respectively. Pair correlations are treated in BCS method with either a separable pairing force or a density-dependent zero-range force. The isotope shifts, excitation energies, electric monopole and quadrupole transition strengths are calculated and compared with corresponding experimental data. The calculated results with both the PC-PK1 and SLy4 forces exhibit a picture of spherical-oblate-prolate shape transition in neutron-rich Sr and Zr isotopes. Compared with the experimental data, the PC-PK1 (or SLy4) force predicts a more moderate (or dramatic) change in most of the collective properties around N=60. The underlying microscopic mechanism responsible for the rapid transition is discussed.Comment: 10 pages (twocolumn), 10 figure

    Effect of pairing correlations on nuclear low-energy structure: BCS and general Bogoliubov transformation

    Full text link
    Low-lying nuclear states of Sm isotopes are studied in the framework of a collective Hamiltonian based on covariant energy density functional theory. Pairing correlation are treated by both BCS and Bogoliubov methods. It is found that the pairing correlations deduced from relativistic Hartree-Bogoliubov (RHB) calculations are generally stronger than those by relativistic mean-field plus BCS (RMF+BCS) with same pairing force. By simply renormalizing the pairing strength, the diagonal part of the pairing field is changed in such a way that the essential effects of the off-diagonal parts of the pairing field neglected in the RMF+BCS calculations can be recovered, and consequently the low-energy structure is in a good agreement with the predictions of the RHB model.Comment: 5 figures, 5 page
    corecore