50,984 research outputs found
Relativistic description of nuclear matrix elements in neutrinoless double- decay
Neutrinoless double- () decay is related to many
fundamental concepts in nuclear and particle physics beyond the standard model.
Currently there are many experiments searching for this weak process. An
accurate knowledge of the nuclear matrix element for the decay
is essential for determining the effective neutrino mass once this process is
eventually measured. We report the first full relativistic description of the
decay matrix element based on a state-of-the-art nuclear
structure model. We adopt the full relativistic transition operators which are
derived with the charge-changing nucleonic currents composed of the vector
coupling, axial-vector coupling, pseudoscalar coupling, and weak-magnetism
coupling terms. The wave functions for the initial and final nuclei are
determined by the multireference covariant density functional theory (MR-CDFT)
based on the point-coupling functional PC-PK1. The low-energy spectra and
electric quadrupole transitions in Nd and its daughter nucleus
Sm are well reproduced by the MR-CDFT calculations. The
decay matrix elements for both the
and decays of Nd are evaluated. The effects
of particle number projection, static and dynamic deformations, and the full
relativistic structure of the transition operators on the matrix elements are
studied in detail. The resulting decay matrix element for the
transition is , which gives the most optimistic
prediction for the next generation of experiments searching for the
decay in Nd.Comment: 17 pages, 9 figures; table adde
Bounds on quark mass matrices elements due to measured properties of the mixing matrix and present values of the quark masses
We obtain constraints on possible structures of mass matrices in the quark
sector by using as experimental restrictions the determined values of the quark
masses at the energy scale, the magnitudes of the quark mixing matrix
elements , , , and , and the
Jarlskog invariant . Different cases of specific mass matrices are
examined in detail. The quality of the fits for the Fritzsch and Stech type
mass matrices is about the same with and
, respectively. The fit for a simple
generalization (one extra parameter) of the Fritzsch type matrices, in the
physical basis, is much better with . For
comparison we also include the results using the quark masses at the 2 GeV
energy scale. The fits obtained at this energy scale are similar to that at
energy scale, implying that our results are unaffected by the evolution
of the quark masses from 2 to 91 GeV.Comment: Evolution effects include
Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models
In this work we consider the standard model extended with singlet sterile
neutrinos with mass in the eV range and mixed with the active neutrinos. The
active-sterile neutrino mixing renders new contributions to the invisible Z
decay width which, in the case of light sterile neutrinos, depends on the
active-sterile mixing matrix elements only. We then use the current
experimental value of the invisible Z decay width to obtain bounds on these
mixing matrix elements for both (3+1) and (3+2) models.Comment: 10 pages, 5 figure
Towards understanding broad degeneracy in non-strange mesons
The spectroscopic regularities of modern empirical data on the non-strange
mesons up to 2.4 GeV can be summarized as a systematic clustering of states
near certain values of energy. It is getting evident that some unknown
X-symmetry triggers the phenomenon. We review the experimental status of this
symmetry and recent theoretical attempts put forward for explanation of broad
degeneracy.Comment: Brief review, 16 pages, 1 figur
SPSA-Based Tracking Method for Single-Channel-Receiver Array
A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal to interference and noise ratio. The proposed tracking method reaches the global optimum rather than local by injecting the extra noise terms into the gradient estimation. The antenna beam can be steered to coincide with the direction of the moving source fast and accurately by perturbing the output of the phase shifters during motion, due to the high efficiency and easy implementation of the proposed beamforming algorithm based on the simultaneous perturbation stochastic approximation (SPSA). Computer simulations verify that the proposed tracking scheme is robust and effective
Investigating non-Fritzsch like texture specific quark mass matrices
A detailed investigation of all possible textures of Fritzsch-like and
non-Fritzsch like, 144 for texture 6 zero and 432 for texture 5 zero mass
matrices, have been carried out to ascertain their compatibility with the
existing quark mixing data. It seems that all the texture 6 zero possibilities
are completely ruled out whereas in the case of texture 5 zero mass matrices
the only viable possibility looks to be that of Fritzsch-like.Comment: 13 pages, 4 figures, Accepted for publication in IJMP
Braneworlds, Conformal Fields and the Gravitons
We investigate the dynamics of Randall-Sundrum AdS5 braneworlds with
5-dimensional conformal matter fields. In the scenario with a compact fifth
dimension the class of conformal fields with weight -4 is associated with exact
5-dimensional warped geometries which are stable under radion field
perturbations and describe on the brane the dynamics of inhomogeneous dust,
generalized dark radiation and homogeneous polytropic dark energy. We analyse
the graviton mode flutuations around this class of background solutions and
determine their mass eigenvalues and wavefunctions from a Sturm-Liouville
problem. We show that the localization of gravity is not sharp enough for large
mass hierarchies to be generated. We also discuss the physical bounds imposed
by experiments in particle physics, in astrophysics and in precise measurements
of the low energy gravitational interaction.Comment: LaTeX, 9 pages, 2 figures. Based on talk given in the Second
International Conference on Quantum Theories and the Renormalization Group in
Gravity and Cosmology, CSIC and University of Barcelona, Barcelona, Spain,
11-15 July 2006. Submitted to be published in the Conference Proceedings, J.
Phys. A: Math. Ge
- âŚ