25,320 research outputs found

    Magnetic Excitations of Stripes and Checkerboards in the Cuprates

    Get PDF
    We discuss the magnetic excitations of well-ordered stripe and checkerboard phases, including the high energy magnetic excitations of recent interest and possible connections to the "resonance peak" in cuprate superconductors. Using a suitably parametrized Heisenberg model and spin wave theory, we study a variety of magnetically ordered configurations, including vertical and diagonal site- and bond-centered stripes and simple checkerboards. We calculate the expected neutron scattering intensities as a function of energy and momentum. At zero frequency, the satellite peaks of even square-wave stripes are suppressed by as much as a factor of 34 below the intensity of the main incommensurate peaks. We further find that at low energy, spin wave cones may not always be resolvable experimentally. Rather, the intensity as a function of position around the cone depends strongly on the coupling across the stripe domain walls. At intermediate energy, we find a saddlepoint at (Ď€,Ď€)(\pi,\pi) for a range of couplings, and discuss its possible connection to the "resonance peak" observed in neutron scattering experiments on cuprate superconductors. At high energy, various structures are possible as a function of coupling strength and configuration, including a high energy square-shaped continuum originally attributed to the quantum excitations of spin ladders. On the other hand, we find that simple checkerboard patterns are inconsistent with experimental results from neutron scattering.Comment: 11 pages, 13 figures, for high-res figs, see http://physics.bu.edu/~yaodx/spinwave2/spinw2.htm

    Magnetic Excitations of Stripes Near a Quantum Critical Point

    Get PDF
    We calculate the dynamical spin structure factor of spin waves for weakly coupled stripes. At low energy, the spin wave cone intensity is strongly peaked on the inner branches. As energy is increased, there is a saddlepoint followed by a square-shaped continuum rotated 45 degree from the low energy peaks. This is reminiscent of recent high energy neutron scattering data on the cuprates. The similarity at high energy between this semiclassical treatment and quantum fluctuations in spin ladders may be attributed to the proximity of a quantum critical point with a small critical exponent η\eta.Comment: 4+ pages, 5 figures, published versio

    Universal Scaling of the Neel Temperature of Near-Quantum-Critical Quasi-Two-Dimensional Heisenberg Antiferromagnets

    Full text link
    We use a quantum Monte Carlo method to calculate the Neel temperature T_N of weakly coupled S=1/2 Heisenberg antiferromagnetic layers consisting of coupled ladders. This system can be tuned to different two-dimensional scaling regimes for T > T_N. In a single-layer mean-field theory, \chi_s^{2D}(T_N)=(z_2J')^{-1}, where \chi_s^{2D} is the exact staggered susceptibility of an isolated layer, J' the inter-layer coupling, and z_2=2 the layer coordination number. With a renormalized z_2, we find that this relationship applies not only in the renormalized-classical regime, as shown previously, but also in the quantum-critical regime and part of the quantum-disordered regime. The renormalization is nearly constant; k_2 ~ 0.65-0.70. We also study other universal scaling functions.Comment: 4 pages, 4 figure

    Reply to Comment on "Quantum phase transition in the four-spin exchange antiferromagnet"

    Full text link
    We argue that our analysis of the J-Q model, presented in Phys. Rev. B 80, 174403 (2009), and based on a field-theory description of coupled dimers, captures properly the strong quantum fluctuations tendencies, and the objections outlined by L. Isaev, G. Ortiz, and J. Dukelsky, arXiv:1003.5205, are misplaced

    COVNET : A cooperative coevolutionary model for evolving artificial neural networks

    Get PDF
    This paper presents COVNET, a new cooperative coevolutionary model for evolving artificial neural networks. This model is based on the idea of coevolving subnetworks. that must cooperate to form a solution for a specific problem, instead of evolving complete networks. The combination of this subnetwork is part of a coevolutionary process. The best combinations of subnetworks must be evolved together with the coevolution of the subnetworks. Several subpopulations of subnetworks coevolve cooperatively and genetically isolated. The individual of every subpopulation are combined to form whole networks. This is a different approach from most current models of evolutionary neural networks which try to develop whole networks. COVNET places as few restrictions as possible over the network structure, allowing the model to reach a wide variety of architectures during the evolution and to be easily extensible to other kind of neural networks. The performance of the model in solving three real problems of classification is compared with a modular network, the adaptive mixture of experts and with the results presented in the bibliography. COVNET has shown better generalization and produced smaller networks than the adaptive mixture of experts and has also achieved results, at least, comparable with the results in the bibliography

    Theory of control of spin/photon interface for quantum networks

    Full text link
    A cavity coupling a charged nanodot and a fiber can act as a quantum interface, through which a stationary spin qubit and a flying photon qubit can be inter-converted via cavity-assisted Raman process. This Raman process can be controlled to generate or annihilate an arbitrarily shaped single-photon wavepacket by pulse-shaping the controlling laser field. This quantum interface forms the basis for many essential functions of a quantum network, including sending, receiving, transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape and average photon number. Numerical study of noise effects on the operations shows high fidelity.Comment: 4 pages, 2 figure

    A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries

    Full text link
    We propose a model to explain a puzzling 3:2 frequency ratio of high frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The upper frequency is fitted by a rotating hotspot near the inner edge of the disc, which is produced by the energy transferred from the BH to the disc, and the lower frequency is fitted by another rotating hotspot somewhere away from the inner edge of the disc, which arises from the screw instability of the magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs in these X-ray binaries could be well fitted to the observational data with a much narrower range of the BH spin. In addition, the spectral properties of HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA

    A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms

    Get PDF
    Expressions for displacements on the surface of a layered half-space due to point force are given in terms of generalized reflection and transmission coefficient matrices (Kennett, 1980) and the discrete wavenumber summation method (Bouchon, 1981). The Bouchon method with complex frequencies yields accurate near-field dynamic and static solutions. The algorithm is extended to include simultaneous evaluation of multiple sources at different depths. This feature is the same as in Olson's finite element discrete Fourier Bessel code (DWFE) (Olson, 1982). As numerical examples, we calculate some layered half-space problems. The results agree with synthetics generated with the Cagniard-de Hoop technique, P-SV modes, and DWFE codes. For a 10-layered crust upper mantle model with a bandwidth of 0 to 10 Hz, this technique requires one-tenth the time of the DWFE calculation. In the presence of velocity gradients, where finer layering is required, the DWFE code is more efficient

    Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two

    Full text link
    Recent theoretical works have demonstrated various robust Abelian and non-Abelian fractional topological phases in lattice models with topological flat bands carrying Chern number C=1. Here we study hard-core bosons and interacting fermions in a three-band triangular-lattice model with the lowest topological flat band of Chern number C=2. We find convincing numerical evidence of bosonic fractional quantum Hall effect at the ν=1/3\nu=1/3 filling characterized by three-fold quasi-degeneracy of ground states on a torus, a fractional Chern number for each ground state, a robust spectrum gap, and a gap in quasihole excitation spectrum. We also observe numerical evidence of a robust fermionic fractional quantum Hall effect for spinless fermions at the ν=1/5\nu=1/5 filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia
    • …
    corecore