78 research outputs found

    Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants.</p> <p>Results</p> <p>To test whether miRNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing we cloned the small RNA from wheat leaves infected by preponderant physiological strain <it>Erysiphe graminis f. sp. tritici </it>(<it>Egt</it>) or by heat stress treatment. A total of 153 miRNAs were identified, which belong to 51 known and 81 novel miRNA families. We found that 24 and 12 miRNAs were responsive to powdery mildew infection and heat stress, respectively. We further predicted that 149 target genes were potentially regulated by the novel wheat miRNA.</p> <p>Conclusions</p> <p>Our results indicated that diverse set of wheat miRNAs were responsive to powdery mildew infection and heat stress and could function in wheat responses to both biotic and abiotic stresses.</p

    Cloning and characterization of microRNAs from wheat (Triticum aestivum L.)

    Get PDF
    A small RNA library was used to identify 58 miRNAs from 43 miRNA families from wheat (Triticum aestivum L.), and 46 potential targets were predicted

    Overexpression of the Wheat (Triticum aestivum L.) TaPEPKR2 Gene Enhances Heat and Dehydration Tolerance in Both Wheat and Arabidopsis

    Get PDF
    Wheat (Triticum aestivum L.) yield and quality are adversely affected by heat, drought, or the combination of these two stresses in many regions of the world. A phosphoenolpyruvate carboxylase kinase-related kinase gene, TaPEPKR2, was identified from our previous heat stress-responsive transcriptome analysis of heat susceptible and tolerant wheat cultivars. Based on the wheat cultivar Chinese Spring genome sequence, TaPEPKR2 was mapped to chromosome 5B. Expression analysis revealed that TaPEPKR2 was induced by heat and polyethylene glycol treatment. To analyze the function of TaPEPKR2 in wheat, we transformed it into the wheat cultivar Liaochun10, and observed that the transgenic lines exhibited enhanced heat and dehydration stress tolerance. To examine whether TaPEPKR2 exhibits the same function in dicotyledonous plants, we transformed it into Arabidopsis, and found that its overexpression functionally enhanced tolerance to heat and dehydration stresses. Our results imply that TaPEPKR2 plays an important role in both heat and dehydration stress tolerance, and could be utilized as a candidate gene in transgenic breeding

    Identification and characterization of maize microRNAs involved in the very early stage of seed germination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a new class of endogenous small RNAs that play essential regulatory roles in plant growth, development and stress response. Extensive studies of miRNAs have been performed in model plants such as rice, <it>Arabidopsis thaliana </it>and other plants. However, the number of miRNAs discovered in maize is relatively low and little is known about miRNAs involved in the very early stage during seed germination.</p> <p>Results</p> <p>In this study, a small RNA library from maize seed 24 hours after imbibition was sequenced by the Solexa technology. A total of 11,338,273 reads were obtained. 1,047,447 total reads representing 431 unique sRNAs matched to known maize miRNAs. Further analysis confirmed the authenticity of 115 known miRNAs belonging to 24 miRNA families and the discovery of 167 novel miRNAs in maize. Both the known and the novel miRNAs were confirmed by sequencing of a second small RNA library constructed the same way as the one used in the first sequencing. We also found 10 miRNAs that had not been reported in maize, but had been reported in other plant species. All novel sequences had not been earlier described in other plant species. In addition, seven miRNA* sequences were also obtained. Putative targets for 106 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in maize imbibed seed.</p> <p>Conclusions</p> <p>This study led to the confirmation of the authenticity of 115 known miRNAs and the discovery of 167 novel miRNAs in maize. Identification of novel miRNAs resulted in significant enrichment of the repertoire of maize miRNAs and provided insights into miRNA regulation of genes expressed in imbibed seed.</p

    Regulation of High-Temperature Stress Response by Small RNAs

    Get PDF
    Temperature extremes constitute one of the most common environmental stresses that adversely affect the growth and development of plants. Transcriptional regulation of temperature stress responses, particularly involving protein-coding gene networks, has been intensively studied in recent years. High-throughput sequencing technologies enabled the detection of a great number of small RNAs that have been found to change during and following temperature stress. The precise molecular action of some of these has been elucidated in detail. In the present chapter, we summarize the current understanding of small RNA-mediated modulation of high- temperature stress-regulatory pathways including basal stress responses, acclimation, and thermo-memory. We gather evidence that suggests that small RNA network changes, involving multiple upregulated and downregulated small RNAs, balance the trade-off between growth/development and stress responses, in order to ensure successful adaptation. We highlight specific characteristics of small RNA-based tem- perature stress regulation in crop plants. Finally, we explore the perspectives of the use of small RNAs in breeding to improve stress tolerance, which may be relevant for agriculture in the near future

    Gibberellins and heterosis of plant height in wheat (<it>Triticum aestivum </it>L.)

    No full text
    Abstract Background Heterosis in internode elongation and plant height are commonly observed in hybrid plants, and higher GAs contents were found to be correlated with the heterosis in plant height. However, the molecular basis for the increased internode elongation in hybrids is unknown. Results In this study, heterosis in plant height was determined in two wheat hybrids, and it was found that the increased elongation of the uppermost internode contributed mostly to the heterosis in plant height. Higher GA4 level was also observed in a wheat hybrid. By using the uppermost internode tissues of wheat, we examined expression patterns of genes participating in both GA biosynthesis and GA response pathways between a hybrid and its parental inbreds. Our results indicated that among the 18 genes analyzed, genes encoding enzymes that promote synthesis of bioactive GAs, and genes that act as positive components in the GA response pathways were up-regulated in hybrid, whereas genes encoding enzymes that deactivate bioactive GAs, and genes that act as negative components of GA response pathways were down-regulated in hybrid. Moreover, the putative wheat GA receptor gene TaGID1, and two GA responsive genes participating in internode elongation, GIP and XET, were also up-regulated in hybrid. A model for GA and heterosis in wheat plant height was proposed. Conclusion Our results provided molecular evidences not only for the higher GA levels and more active GA biosynthesis in hybrid, but also for the heterosis in plant height of wheat and possibly other cereal crops.</p

    Characterization of Small RNAs Derived from tRNAs, rRNAs and snoRNAs and Their Response to Heat Stress in Wheat Seedlings

    No full text
    <div><p>Small RNAs (sRNAs) derived from non-coding RNAs (ncRNAs), such as tRNAs, rRNAs and snoRNAs, have been identified in various organisms. Several observations have indicated that cleavage of tRNAs and rRNAs is induced by various stresses. To clarify whether sRNAs in wheat derived from tRNAs (stRNAs), rRNAs (srRNAs) and snoRNAs (sdRNAs) are produced specifically in association with heat stress responses, we carried out a bioinformatic analysis of sRNA libraries from wheat seedlings and performed comparisons between control and high-temperature-treated samples to measure the differential abundance of stRNAs, srRNAs and sdRNAs. We found that the production of sRNAs from tRNAs, 5.8S rRNAs, and 28S rRNAs was more specific than that from 5S rRNAs and 18S rRNAs, and more than 95% of the stRNAs were processed asymmetrically from the 3’ or 5’ ends of mature tRNAs. We identified 333 stRNAs and 8,822 srRNAs that were responsive to heat stress. Moreover, the expression of stRNAs derived from tRNA-Val-CAC, tRNA-Thr-UGU, tRNA-Tyr-GUA and tRNA-Ser-UGA was not only up-regulated under heat stress but also induced by osmotic stress, suggesting that the increased cleavage of tRNAs might be a mechanism that developed in wheat seedlings to help them cope with adverse environmental conditions.</p></div
    • …
    corecore