2,228 research outputs found

    Template-Instance Loss for Offline Handwritten Chinese Character Recognition

    Full text link
    The long-standing challenges for offline handwritten Chinese character recognition (HCCR) are twofold: Chinese characters can be very diverse and complicated while similarly looking, and cursive handwriting (due to increased writing speed and infrequent pen lifting) makes strokes and even characters connected together in a flowing manner. In this paper, we propose the template and instance loss functions for the relevant machine learning tasks in offline handwritten Chinese character recognition. First, the character template is designed to deal with the intrinsic similarities among Chinese characters. Second, the instance loss can reduce category variance according to classification difficulty, giving a large penalty to the outlier instance of handwritten Chinese character. Trained with the new loss functions using our deep network architecture HCCR14Layer model consisting of simple layers, our extensive experiments show that it yields state-of-the-art performance and beyond for offline HCCR.Comment: Accepted by ICDAR 201

    Diethyl 2-{4-diethyl­amino-2-[(dimethyl­carbamothio­yl)­oxy]benzyl­idene}malonate

    Get PDF
    In the title compound, C21H30N2O5S, the plane of the dimeth­yl–thio­carbamic group makes a dihedral angle of 78.41 (7)° with the central benzene ring. One of the carbonyl groups in the α,β-unsaturated malonate side chain makes a dihedral angle of 8.73 (10)° with the central benzene ring, while the other carbonyl group makes a dihedral angle of 81.52 (8)°

    β-Nd2Mo4O15

    Get PDF
    The title compound, dineodymium(III) tetra­molybdate(VI), has been prepared by a flux technique and is the second polymorph of composition Nd2Mo4O15. The crystal structure is isotypic with those of Ce2Mo4O15 and Pr2Mo4O15. It features a three-dimensional network composed of distorted edge- and corner-sharing NdO7 polyhedra, NdO8 polyhedra, MoO4 tetra­hedra and MoO6 octa­hedra

    catena-Poly[[dichloridocopper(II)]-μ-4,4′-bis­(benzimidazol-1-yl)biphen­yl]

    Get PDF
    In the title compound, [CuCl2(C26H18N4)]n, the Cu(II) ion is four-coordinated by two N atoms from two 4,4′-bis­(benzo­imidazol-1-yl)biphenyl ligands and two chloride anions, in a slightly distorted tetra­hedral environment. The biphenyl ligand acts as a linear bidentate ligand, connecting the metal atoms into an infinite chain parallel to [101]. In the biphenyl ligand, the two benzene rings make a dihedral angle of 33.19 (7)°

    Genetic engineering and genome editing techniques in peanut plants

    Get PDF
    Research has long been associated with human life. In the effort to make a living, many experts who have contributed to the modernization of traditional research methods by conducting various research activities. In this process, professionals, from farmers to senior researchers, have done their part by developing plants that can tolerate or resist to disease. The growing population, climate change and plant disease are having a devastating effect on food security. In particular, it is essential to increase food production by producing high yielding crops of good quality, that may ensure food security. Recently, different gene- editing technologies have been developed. These techniques have been applied in many research fields and their development has provided economic benefits to farmers. Agrobacterium-mediated and biolistic methods are very important techniques for transforming genetic materials in plants. Genome- editing technologies are recent and highly applied in plant research to improve genes associated with yield, disease resistance and drought resistance. For example, Zinc-finger Nucleases (ZFNS), Transcription Activator-like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats system (CRISPR/ Cas9) methods are now widely applied by researchers and are playing a positive role in increasing production and productivity. Of the gene- editing technology, CRISPR/ Cas9 is widely applied in plant breeding programme as it is easy to use and cost-effective. In this review, we mainly focus on peanut plant, which is an important oil-bearing allotetraploid crop. Therefore, peanut gene editing-technology could increase the oleic acid content in edible peanut oil. Thus, genome editing and gene transformation technologies are extensively explored in this review

    catena-Poly[[[diaqua­manganese(II)]-bis­[μ-1,3-bis­(1H-imidazol-1-ylmeth­yl)benzene-κ2 N 3:N 3′]] dinitrate]

    Get PDF
    In the title compound, {[Mn(C14H14N4)2(H2O)2](NO3)2}n, the MnII ion is located on an inversion center and is coordinated by four N atoms from four 1,3-bis­(1H-imidazol-1-ylmeth­yl)benzene (L) ligands and two water mol­ecules in a distorted octa­hedral geometry. Two L ligands are related by a centre of symmetry and bridge MnII ions, forming a positively charged polymeric chain in [101]. Uncoordinated nitrate anions further link these chains into layers parallel to the ac plane via O—H⋯O hydrogen bonds

    The role of autophagy in the treatment of type II diabetes and its complications: a review

    Get PDF
    Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing annually, posing a significant threat to human life and health. Consequently, there is an urgent requirement to discover effective drugs and investigate the pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet structure. However, in a state of high glucose, autophagy is inhibited, resulting in impaired islet function, insulin resistance, and complications. Studies have shown that modulating autophagy through activation or inhibition can have a positive impact on the treatment of T2DM and its complications. However, it is important to note that the specific regulatory mechanisms vary depending on the target organ. This review explores the role of autophagy in the pathogenesis of T2DM, taking into account both genetic and external factors. It also provides a summary of reported chemical drugs and traditional Chinese medicine that target the autophagic pathway for the treatment of T2DM and its complications
    corecore