85 research outputs found

    Numerical approximation of a phase-field surfactant model with fluid flow

    Full text link
    Modelling interfacial dynamics with soluble surfactants in a multiphase system is a challenging task. Here, we consider the numerical approximation of a phase-field surfactant model with fluid flow. The nonlinearly coupled model consists of two Cahn-Hilliard-type equations and incompressible Navier-Stokes equation. With the introduction of two auxiliary variables, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. By certain subtle explicit-implicit treatments to stress and convective terms, we construct first and second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving only a sequence of linear elliptic equations, and computations of phase-field variables, velocity and pressure are fully decoupled. We further establish a rigorous proof of unconditional energy stability for the first-order scheme. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow, where the increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence

    Three-dimensional simulation of wormhole propagation in fractured-vuggy carbonate rocks during acidization

    Get PDF
    Acidization is a widely used stimulation technique for carbonate reservoirs aimed at removing formation damage, and if successful, can result in the creation of wormholes of specific lengths and conductivities around the wellbore. The formation of wormholes depends on the injection rate for a particular acid-mineral system and can be predicted through numerical simulations of the reactive phenomenon during acidization. In this paper, the commonly used two-scale continuum model is enhanced to encompass fractured-vuggy porous media. The fractures are characterized by a pseudo-fracture model, while vugs are represented by a cluster of anomalous matrices with high porosity. Moreover, a method for generating random pore-fracture-vuggy models is proposed. The governing equations are discretized by the finite volume method and are solved under three-dimensional linear and radial conditions. Sensitivity analysis of dissolution dynamics with respect to fracture and vug parameters is performed. The simulation results indicate that both fractures and vugs significantly impact wormhole development. Except for fractures perpendicular to the acid flow direction, fractures in other directions play a crucial role in determining the direction of wormhole growth.Cited as: Liu, P., Kong, X., Feng, G., Zhang, K., Sun, S., Yao, J. Three-dimensional simulation of wormhole propagation in fractured-vuggy carbonate rocks during acidization. Advances in Geo-Energy Research, 2023, 7(3): 199-210. https://doi.org/10.46690/ager.2023.03.0

    Type I interferon signaling facilitates the development of IL-10-producing effector CD8+ T cells during influenza virus infection

    Get PDF
    Recent evidence has suggested that IL-10-producing effector CD8+ T cells play an important role in regulating excessive inflammation during acute viral infections. However, the cellular and molecular cues regulating the development of IL-10-producing effector CD8+ T cells are not completely defined. Here, we show that type I interferons (IFNs) are required for the development of IL-10-producing effector CD8+ T cells during influenza virus infection in mice. We find that type I IFNs can enhance IL-27 production by lung APCs, thereby facilitating IL-10-producing CD8+ T-cell development through a CD8+ T-cell-nonautonomous way. Surprisingly, we also demonstrate that direct type I IFN signaling in CD8+ T cells is required for the maximal generation of IL-10-producing CD8+ T cells. Type I IFN signaling in CD8+ T cells, in cooperation with IL-27 and IL-2 signaling, promotes and sustains the expression of IFN regulatory factor 4 (IRF4) and B-lymphocyte-induced maturation protein-1 (Blimp-1), two transcription factors required for the production of IL-10 by effector CD8+ T cells. Our data reveal a critical role of the innate antiviral effector cytokines in regulating the production of a regulatory cytokine by effector CD8+ T cells during respiratory virus infection

    Differentiation, Distribution and γδ T Cell-Driven Regulation of IL-22-Producing T Cells in Tuberculosis

    Get PDF
    Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vγ2Vδ2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNγ-producing Vγ2Vδ2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNγ neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vγ2Vδ2 T-cell-driven IFNγ-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vγ2Vδ2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB

    Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy

    Get PDF
    Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids
    • …
    corecore