75 research outputs found

    WSO-LDA: An Online Sentiment + Topic Weibo Topic Mining Algorithm

    Get PDF
    In order to accurately excavate the micro-blog (Weibo) topic information and emotional information, we put forward Weibo Sentiment Online-LDA model on the basis of LDA. The model prejudges the emotional tendencies of the words in the text as a priori information of emotions and expands LDA model according to the emotional layer to get the topic information and the different emotional information of the topic. It also considers the influence of text information on the current time, dynamically adjusts the genetic coefficient of the topic, and ensures that the hot topic features are inherited to the next moment. The experiments show that WSO-LDA model mining matches the topic information and emotion information, and the model confusion degree is superior to other topic models

    Recent Advances in Morphological Cell Image Analysis

    Get PDF
    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed

    EFFECTS OF VIETNAMESE SOPHORA ROOT ON GROWTH, ADHESION, INVASION AND MOTILITY OF MELANOMA CELLS

    Get PDF
    Background: Vietnamese Sophora Root mainly contains active constituents such as alkaloids, and it has anti-tumour, antibacterial, and anti-inflammatory effects. The objective of the paper was to study the effects of Vietnamese Sophora Root on growth, adhesion, invasion and motility of mouse melanoma B16BL6 cells, and to preliminarily explore its mechanism of action. Materials and Methods: MTT assay was used to detect the effect of Vietnamese Sophora Root aqueous extract on B16BL6 cell proliferation. Cell adhesion assay, reconstituted basement membrane invasion assay and chemotactic motility assay were used to observe the effects of Vietnamese Sophora Root aqueous extract on adhesion, invasion and motility of B16BL6 cells. Results: Different concentrations of Vietnamese Sophora Root aqueous extracts had different degrees of inhibitory effects on B16BL6 proliferation. With the decrease of concentration, the proliferation inhibitory effect decreased and even turned to promoting effect. The extract significantly inhibited the adhesion of B16BL6 cells to the basement membrane component LN, and had a significant effect on both the invasive and migratory capacities of B16BL6 cells through the basement membrane. Conclusion: We concluded that the aqueous extract of Vietnamese Sophora Root can inhibit the proliferation of melanoma cells, as well as their adhesion and movement

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity

    A Dynamic Model of Cytosolic Calcium Concentration Oscillations in Mast Cells

    No full text
    In this paper, a dynamic model of cytosolic calcium concentration ([Ca2+]Cyt) oscillations is established for mast cells (MCs). This model includes the cytoplasm (Cyt), endoplasmic reticulum (ER), mitochondria (Mt), and functional region (μd), formed by the ER and Mt, also with Ca2+ channels in these cellular compartments. By this model, we calculate [Ca2+]Cyt oscillations that are driven by distinct mechanisms at varying kdeg (degradation coefficient of inositol 1,4,5-trisphosphate, IP3 and production coefficient of IP3), as well as at different distances between the ER and Mt (ER–Mt distance). The model predicts that (i) Mt and μd compartments can reduce the amplitude of [Ca2+]Cyt oscillations, and cause the ER to release less Ca2+ during oscillations; (ii) with increasing cytosolic IP3 concentration ([IP3]Cyt), the amplitude of oscillations increases (from 0.1 μM to several μM), but the frequency decreases; (iii) the frequency of [Ca2+]Cyt oscillations decreases as the ER–Mt distance increases. What is more, when the ER–Mt distance is greater than 65 nm, the μd compartment has less effect on [Ca2+]Cyt oscillations. These results suggest that Mt, μd, and IP3 can all affect the amplitude and frequency of [Ca2+]Cyt oscillations, but the mechanism is different. The model provides a comprehensive mechanism for predicting cytosolic Ca2+ concentration oscillations in mast cells, and a theoretical basis for calcium oscillations observed in mast cells, so as to better understand the regulation mechanism of calcium signaling in mast cells

    A hybrid model for HIV transmission among men who have sex with men

    No full text
    AIDS has spread throughout the world for decades. Men who have sex with men (MSM) is the harder-hit sector of sexually transmitted diseases due to their physiological characteristics. However, because homosexuals suffer discrimination and exclusion in many aspects, the relevant data about the spread of HIV in this group are scarce. Therefore, building a network model to study and analyze this problem can provide valuable reference for the prevention of HIV. Complex network can establish fixed edges between vertices, and ignores the spatial characteristics of the network. These two aspects are exactly what cellular automata are good at, but cellular automata are rarely used in the problem of HIV propagation among MSM populations. Therefore, we combined the advantages of these two methods, and got a new hybrid model. It may provide us with some theoretical factors that affect the spread of HIV and provide guidance for the actual prevention work

    Kalopanaxsaponin A induces reactive oxygen species mediated mitochondrial dysfunction and cell membrane destruction in Candida albicans.

    No full text
    Candidiasis causes high morbidity and mortality among immunocompromised patients. Antifungal drug resistance and cytotoxicity highlight the need of effective antifungal therapeutics. In this study, we found that kalopanaxsaponin A (KPA), a triterpenoid saponin natural product, could inhibit the proliferation of various Candida species, and exerted a fungicidal effect against C. albicans. To further explore its antifungal action mode, spectrofluorophotometer, fluorescence microscopy and transmission electron microscopy were performed, showing that KPA treatment induced the accumulation of intracellular reactive oxygen species (ROS), resulting in mitochondrial dysfunction. Meanwhile, KPA treatment also broke down the membrane barrier of C. albicans causing the leakage of intracellular trehalose, the entrance of extracellular impermeable substance and the decrease of ergosterol content. Both ROS accumulation and membrane destruction contributed to the death of C. albicans cells. Our work preliminarily elucidated the potential mechanisms of KPA against C. albicans on a cellular level, and might provide a potential option for the treatment of clinical candidiasis

    MFC/NFC-Based Foam/Aerogel for Production of Porous Materials: Preparation, Properties and Applications

    No full text
    Nanofibrillated cellulose and microfibrillated cellulose are potential raw materials separated from plant fibers with a high aspect ratio and excellent mechanical properties, which can be applied in various fields (packaging, medicine, etc.). They have unique advantages in the preparation of aerogels and foams, and have attracted widespread attention in recent years. Cellulose-based porous materials have good biodegradability and biocompatibility, while high porosity and high specific surface area endow them with strong mechanical properties and liquid retention performance, which can be used in wall construction, sewage treatment and other fields. At present, the preparation method of this material has been widely reported, however, due to various process problems, the actual production has not been realized. In this paper, we summarize the existing technical problems and main solutions; in the meantime, two stable systems and several drying processes are described, and the application potential of cellulose-based porous materials in the future is described, which provides a reference for subsequent research
    corecore