833 research outputs found
Universally Composable Quantum Multi-Party Computation
The Universal Composability model (UC) by Canetti (FOCS 2001) allows for
secure composition of arbitrary protocols. We present a quantum version of the
UC model which enjoys the same compositionality guarantees. We prove that in
this model statistically secure oblivious transfer protocols can be constructed
from commitments. Furthermore, we show that every statistically classically UC
secure protocol is also statistically quantum UC secure. Such implications are
not known for other quantum security definitions. As a corollary, we get that
quantum UC secure protocols for general multi-party computation can be
constructed from commitments
Reducing the communication complexity with quantum entanglement
We propose a probabilistic two-party communication complexity scenario with a
prior nonmaximally entangled state, which results in less communication than
that is required with only classical random correlations. A simple all-optical
implementation of this protocol is presented and demonstrates our conclusion.Comment: 4 Pages, 2 Figure
Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface
Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry
Fabry-Perot interference and spin filtering in carbon nanotubes
We study the two-terminal transport properties of a metallic single-walled
carbon nanotube with good contacts to electrodes, which have recently been
shown [W. Liang et al, Nature 441, 665-669 (2001)] to conduct ballistically
with weak backscattering occurring mainly at the two contacts. The measured
conductance, as a function of bias and gate voltages, shows an oscillating
pattern of quantum interference. We show how such patterns can be understood
and calculated, taking into account Luttinger liquid effects resulting from
strong Coulomb interactions in the nanotube. We treat back-scattering in the
contacts perturbatively and use the Keldysh formalism to treat non-equilibrium
effects due to the non-zero bias voltage. Going beyond current experiments, we
include the effects of possible ferromagnetic polarization of the leads to
describe spin transport in carbon nanotubes. We thereby describe both
incoherent spin injection and coherent resonant spin transport between the two
leads. Spin currents can be produced in both ways, but only the latter allow
this spin current to be controlled using an external gate. In all cases, the
spin currents, charge currents, and magnetization of the nanotube exhibit
components varying quasiperiodically with bias voltage, approximately as a
superposition of periodic interference oscillations of spin- and
charge-carrying ``quasiparticles'' in the nanotube, each with its own period.
The amplitude of the higher-period signal is largest in single-mode quantum
wires, and is somewhat suppressed in metallic nanotubes due to their sub-band
degeneracy.Comment: 12 pages, 6 figure
High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis
<p>Abstract</p> <p>Background</p> <p>Combination of <it>CHD </it>(chromo-helicase-DNA binding protein)-specific polymerase chain reaction (PCR) with electrophoresis (PCR/electrophoresis) is the most common avian molecular sexing technique but it is lab-intensive and gel-required. Gender determination often fails when the difference in length between the PCR products of <it>CHD-Z </it>and <it>CHD-W </it>genes is too short to be resolved.</p> <p>Results</p> <p>Here, we are the first to introduce a PCR-melting curve analysis (PCR/MCA) to identify the gender of birds by genomic DNA, which is gel-free, quick, and inexpensive. <it>Spilornis cheela hoya </it>(<it>S. c. hoya</it>) and <it>Pycnonotus sinensis </it>(<it>P. sinensis</it>) were used to illustrate this novel molecular sexing technique. The difference in the length of <it>CHD </it>genes in <it>S. c. hoya </it>and <it>P. sinensis </it>is 13-, and 52-bp, respectively. Using Griffiths' P2/P8 primers, molecular sexing failed both in PCR/electrophoresis of <it>S. c. hoya </it>and in PCR/MCA of <it>S. c. hoya </it>and <it>P. sinensis</it>. In contrast, we redesigned sex-specific primers to yield 185- and 112-bp PCR products for the <it>CHD-Z </it>and <it>CHD-W </it>genes of <it>S. c. hoya</it>, respectively, using PCR/MCA. Using this specific primer set, at least 13 samples of <it>S. c. hoya </it>were examined simultaneously and the Tm peaks of <it>CHD-Z </it>and <it>CHD-W </it>PCR products were distinguished.</p> <p>Conclusion</p> <p>In this study, we introduced a high-throughput avian molecular sexing technique and successfully applied it to two species. This new method holds a great potential for use in high throughput sexing of other avian species, as well.</p
MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs
Research over the last few years has demonstrated the increasing role of microRNAs (miRNAs) as major regulators of gene expression in diverse cellular processes and diseases. Several viruses, particularly herpesviruses, also use the miRNA pathway of gene regulation by encoding their own miRNAs. Marek's disease (MD) is a widespread lymphomatous neoplastic disease of poultry caused by the highly contagious Marek's disease virus type 1 (MDV-1). Recent studies using virus-infected chicken embryo fibroblasts have identified at least eight miRNAs that map to the R(L)/R(S) region of the MDV genome. Since MDV is a lymphotropic virus that induces T-cell lymphomas, analysis of the miRNA profile in T-cell lymphoma would be more relevant for examining their role in oncogenesis. We determined the viral and host miRNAs expressed in MSB-1, a lymphoblastoid cell line established from an MDV-induced lymphoma of the spleen. In this paper, we report the identification of 13 MDV-1-encoded miRNAs (12 by direct cloning and 1 by Northern blotting) from MSB-1 cells. These miRNAs, five of which are novel MDV-1 miRNAs, map to the Meq and latency-associated transcript regions of the MDV genome. Furthermore, we show that miRNAs encoded by MDV-1 and the coinfected MDV-2 accounted for >60% of the 5,099 sequences of the MSB-1 âmiRNAome.â Several chicken miRNAs, some of which are known to be associated with cancer, were also cloned from MSB-1 cells. High levels of expression of MDV-1-encoded miRNAs and potentially oncogenic host miRNAs suggest that miRNAs may have major roles in MDV pathogenesis and neoplastic transformation
A common algebraic description for probabilistic and quantum computations
AbstractThrough the study of gate arrays we develop a unified framework to deal with probabilistic and quantum computations, where the former is shown to be a natural special case of the latter. On this basis we show how to encode a probabilistic or quantum gate array into a sum-free tensor formula which satisfies the conditions of the partial trace problem, and vice-versa; that is, given a tensor formula F of order nĂ1 over a semiring S plus a positive integer k, deciding whether the kth partial trace of the matrix valSn,n(F·FT) fulfills a certain property. We use this to show that a certain promise version of the sum-free partial trace problem is complete for the class pr- BPP (promise BPP) for formulas over the semiring (Q+,+,·) of the positive rational numbers, for pr-BQP (promise BQP) in the case of formulas defined over the field (Q+,+,·), and if the promise is given up, then completeness for PP is shown, regardless whether tensor formulas over positive rationals or rationals in general are used. This suggests that the difference between probabilistic and quantum polytime computers may ultimately lie in the possibility, in the latter case, of having destructive interference between computations occurring in parallel. Moreover, by considering variants of this problem, classes like âP, NP, C=P, its complement co-C=P, the promise version of Valiant's class UP, its generalization promise SPP, and unique polytime US can be characterized by carrying the problem properties and the underlying semiring
QCD sum rules analysis of the rare B_c \rar X\nu\bar{\nu} decays
Taking into account the gluon correction contributions to the correlation
function, the form factors relevant to the rare B_c \rar X \nu\bar{\nu}
decays are calculated in the framework of the three point QCD sum rules, where
stands for axial vector particle, , and vector particles,
. The total decay width as well as the branching ratio of these
decays are evaluated using the dependent expressions of the form factors.
A comparison of our results with the predictions of the relativistic
constituent quark model is presented.Comment: 21 Pages, 2 Figures and 5 Table
Final state interactions in the decay
In this article, we study the final-state rescattering effects in the decay
, the numerical results indicate the corrections are
comparable with the contribution from the naive factorizable amplitude, and the
total amplitudes can accommodate the experimental data.Comment: 11 pages, 1 figure, revised version, to appear in EPJ
- âŠ