24 research outputs found

    Generation of highly symmetric, cylindrically convergent shockwaves in water

    Get PDF
    We report on pulsed power driven, exploding copper wire array experiments conducted to generate cylindrical convergent shockwaves in water employing μs risetime currents >550 kA in amplitude and with stored energies of >15 kJ—a substantial increase over previous results. The experiments were carried out on the recently constructed Mega-Ampere-Compression-and-Hydrodynamics facility at Imperial College London in collaboration with colleagues of Technion, Israel. 10 mm diameter arrays consisting of 60 × 130 μm wires were utilized, and the current and voltage diagnostics of the load region suggested that ∼8 kJ of energy was deposited in the wires (and the load region close to the wires) during the experiments, resulting in the formation of dense, highly resistive plasmas that rapidly expanded driving the shockwaves in water. Laser-backlit framing images of the shockfront were obtained at radii 50:1. Framing images and streak photographs showed that the velocity of the shockwave reached ∼7.5 km s−1 at 0.1 mm from the axis. 2D hydrodynamic simulations that match the experimentally obtained implosion trajectory suggest that pressures >1 Mbar are produced within 10 μm of the axis along with water densities of 3gcm−3 and temperatures of many 1000 s of Kelvin. Under these conditions, Quotidian Equation of State suggests that a strongly coupled plasma with an ionization fraction of ∼0.7 would be formed. The results represent a “stepping stone” in the application of the technique to drive different material samples into high pressure, warm dense matter regimes with compact, university scale generators, and provide support in scaling the technique to multi-mega ampere currents

    Epigenetic mechanism of FMR1 inactivation in Fragile X syndrome

    No full text
    Fragile X syndrome is the most frequent cause of inherited intellectual disability. The primary molecular defect in this disease is the expansion of a CGG repeat in the 5' region of the fragile X mental retardation1 (FMR1) gene, leading to de novo methylation of the promoter and inactivation of this otherwise normal gene, but little is known about how these epigenetic changes occur during development. In order to gain insight into the nature of this process, we have used cell fusion technology to recapitulate the events that occur during early embryogenesis. These experiments suggest that the naturally occurring Fragile XFMR1 5' region undergoes inactivation post implantation in a Dicer/Ago-dependent targeted process which involves local SUV39H-mediated tri-methylation of histone H3K9. It thus appears that Fragile X syndrome may come about through inadvertent siRNA-mediated heterochromatinization
    corecore