13 research outputs found

    Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells

    Get PDF
    AbstractHuman embryonic stem (ES) cells are pluripotent cell lines that have been derived from the inner cell mass (ICM) of blastocyst stage embryos [1–3]. They are characterized by their ability to be propagated indefinitely in culture as undifferentiated cells with a normal karyotype and can be induced to differentiate in vitro into various cell types [1, 2, 4–6]. Thus, human ES cells promise to serve as an unlimited cell source for transplantation. However, these unique cell lines tend to spontaneously differentiate in culture and therefore are difficult to maintain. Furthermore, colonies may contain several cell types and may be composed of cells other than pluripotent cells [1, 2, 6]. In order to overcome these difficulties and establish lines of cells with an undifferentiated phenotype, we have introduced a reporter gene that is regulated by a promoter of an ES cell-enriched gene into the cells. For the introduction of DNA into human ES cells, we have established a specific transfection protocol that is different from the one used for murine ES cells. Human ES cells were transfected with enhanced green fluorescence protein (EGFP), under the control of murine Rex1 promoter. The transfected cells show high levels of GFP expression when in an undifferentiated state. As the cells differentiate, this expression is dramatically reduced in monolayer cultures as well as in the primitive endoderm of early stage (simple) embryoid bodies (EBs) and in mature EBs. The undifferentiated cells expressing GFP can be analyzed and sorted by using a Fluorescence Activated Cell Sorter (FACS). Thus, we have established lines of human ES cells in which only undifferentiated cells are fluorescent, and these cells can be followed and selected for in culture. We also propose that the pluripotent nature of the culture is made evident by the ability of the homogeneous cell population to form EBs. The ability to efficiently transfect human ES cells will provide the means to study and manipulate these cells for the purpose of basic and applied research

    Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons

    Get PDF
    SummaryFragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from a CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Here, we report a strategy for CGG repeat correction using CRISPR/Cas9 for targeted deletion in both embryonic stem cells and induced pluripotent stem cells derived from FXS patients. Following gene correction in FXS induced pluripotent stem cells, FMR1 expression was restored and sustained in neural precursor cells and mature neurons. Strikingly, after removal of the CGG repeats, the upstream CpG island of the FMR1 promoter showed extensive demethylation, an open chromatin state, and transcription initiation. These results suggest a silencing maintenance mechanism for the FMR1 promoter that is dependent on the existence of the CGG repeat expansion. Our strategy for deletion of trinucleotide repeats provides further insights into the molecular mechanisms of FXS and future therapies of trinucleotide repeat disorders

    Human Pluripotent Stem Cells with Distinct X Inactivation Status Show Molecular and Cellular Differences Controlled by the X-Linked ELK-1 Gene

    Get PDF
    Female human pluripotent stem cells show vast heterogeneity regarding the status of X chromosome inactivation. By comparing the gene expression profile of cells with two active X chromosomes (XaXa cells) to that of cells with only one active X chromosome (XaXi cells), a set of autosomal genes was shown to be overexpressed in the XaXa cells. Among these genes, we found significant enrichment for genes regulated by the X-linked transcription factor ELK-1. Comparison of the phenotype of XaXa and XaXi cells demonstrated differences in programmed cell death and differentiation, implying some growth disadvantage of the XaXa cells. Interestingly, ELK-1-overexpressing cells mimicked the phenotype of XaXa cells, whereas knockdown of ELK-1 with small hairpin RNA mimicked the phenotype of XaXi cells. When cultured at low oxygen levels, these cellular differences were considerably weakened. Our analysis implies a role of ELK-1 in the differences between pluripotent stem cells with distinct X chromosome inactivation statuses

    Molecular Characterization of Down Syndrome Embryonic Stem Cells Reveals a Role for RUNX1 in Neural Differentiation

    No full text
    Down syndrome (DS) is the leading genetic cause of mental retardation and is caused by a third copy of human chromosome 21. The different pathologies of DS involve many tissues with a distinct array of neural phenotypes. Here we characterize embryonic stem cell lines with DS (DS-ESCs), and focus on the neural aspects of the disease. Our results show that neural progenitor cells (NPCs) differentiated from five independent DS-ESC lines display increased apoptosis and downregulation of forehead developmental genes. Analysis of differentially expressed genes suggested RUNX1 as a key transcription regulator in DS-NPCs. Using genome editing we were able to disrupt all three copies of RUNX1 in DS-ESCs, leading to downregulation of several RUNX1 target developmental genes accompanied by reduced apoptosis and neuron migration. Our work sheds light on the role of RUNX1 and the importance of dosage balance in the development of neural phenotypes in DS

    Selective Elimination of Human Pluripotent Stem Cells by an Oleate Synthesis Inhibitor Discovered in a High-Throughput Screen

    Get PDF
    SummaryThe use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules and identified 15 pluripotent cell-specific inhibitors (PluriSIns), nine of which share a common structural moiety. The PluriSIns selectively eliminated hPSCs while sparing a large array of progenitor and differentiated cells. Cellular and molecular analyses demonstrated that the most selective compound, PluriSIn #1, induces ER stress, protein synthesis attenuation, and apoptosis in hPSCs. Close examination identified this molecule as an inhibitor of stearoyl-coA desaturase (SCD1), the key enzyme in oleic acid biosynthesis, revealing a unique role for lipid metabolism in hPSCs. PluriSIn #1 was also cytotoxic to mouse blastocysts, indicating that the dependence on oleate is inherent to the pluripotent state. Finally, application of PluriSIn #1 prevented teratoma formation from tumorigenic undifferentiated cells. These findings should increase the safety of hPSC-based treatments

    Aberrant DNA Methylation in ES Cells

    Get PDF
    <div><p>Both mouse and human embryonic stem cells can be differentiated in vitro to produce a variety of somatic cell types. Using a new developmental tracing approach, we show that these cells are subject to massive aberrant CpG island de novo methylation that is exacerbated by differentiation in vitro. Bioinformatics analysis indicates that there are two distinct forms of abnormal de novo methylation, global as opposed to targeted, and in each case the resulting pattern is determined by molecular rules correlated with local pre-existing histone modification profiles. Since much of the abnormal methylation generated in vitro appears to be stably maintained, this modification may inhibit normal differentiation and could predispose to cancer if cells are used for replacement therapy. Excess CpG island methylation is also observed in normal placenta, suggesting that this process may be governed by an inherent program.</p></div

    Resetting de novo methylation in vivo.

    No full text
    <p>Blastocysts injected with ES cells carrying a GFP expression vector were transplanted into pseudo-pregnant mice. Whole embryos were isolated at 16 dpc and sorted for GFP<sup>+</sup> and GFP<sup>−</sup> cells. DNA from these cells was then treated with bisulfite and deep-sequenced (Ion Torrent) at four different specific CpG island sequences. <b>a</b>. 7,000 individual molecules of island A containing nine individual CpGs with yellow indicating methylation. <b>b</b>. Graph showing percent methylation for islands A, B, C and D.</p
    corecore