35 research outputs found

    A pair of receptor-like kinases is responsible for natural variation in shoot growth response to mannitol treatment in Arabidopsis thaliana.

    Get PDF
    SUMMARY Growth is a complex trait that adapts to the prevailing conditions by integrating many internal and external signals. Understanding the molecular origin of this variation remains a challenging issue. In this study, natural variation of shoot growth under mannitol-induced stress was analyzed by standard quantitative trait locus mapping methods in a recombinant inbred line population derived from a cross between the Col-0 and Cvi-0 Arabidopsis thaliana accessions. Cloning of a major QTL specific to mannitol-induced stress condition led to identification of EGM1 and EGM2, a pair of tandem-duplicated genes encoding receptor-like kinases that are potentially involved in signaling of mannitol-associated stress responses. Using various genetic approaches, we identified two non-synonymous mutations in the EGM2 [Cvi] allele that are shared by at least ten accessions from various origins and are probably responsible for a specific tolerance to mannitol. We have shown that the enhanced shoot growth phenotype contributed by the Cvi allele is not linked to generic osmotic properties but instead to a specific chemical property of mannitol itself. This result raises the question of the function of such a gene in A. thaliana, a species that does not synthesize mannitol. Our findings suggest that the receptor-like kinases encoded by EGM genes may be activated by mannitol produced by pathogens such as fungi, and may contribute to plant defense responses whenever mannitol is present

    Point-of-care and point-of-'can': leveraging reference-laboratory capacity for integrated diagnosis of fever syndromes in the tropics

    No full text
    BACKGROUND: There is an urgent need for integrated diagnosis of febrile syndromes able to account for multiple pathogens and to inform decisions for clinical care and public health. AIMS: To reflect on the evolving roles of laboratory-based testing for non-malarial febrile illnesses (NMFIs) in low-resource settings, and to consider how advances in diagnostics, in connectivity and transport, and in implementation of quality systems may substantially enhance the capacity of reference laboratories to bridge the current gap between remote passive surveillance and clinically meaningful integrated fever diagnosis. SOURCES: Iterative search of PubMed databases, organizational reports, and expert consultation. CONTENT: Implementation of new technologies-such as very broad molecular panels for surveillance and mass spectrometry-may considerably diminish capability gaps in reference laboratories in low-resource settings. Although the need for clinical bacteriology diagnostics is now recognized, the lack of new simple and rapid phenotypic tests for antimicrobial resistance remains a key deficiency. Several initiatives to strengthen diagnostic preparedness for infectious disease outbreaks have highlighted the need for functional tiered laboratory networks. Recently, dramatic headway in connectivity-such as combining automated readers with the image processing and data transmission capabilities of smartphones-now allows for more complex testing and interfacing with distant laboratory information systems while reducing workload and errors. Together with connectivity to transmit and receive results, new approaches to specimen collection and transport-such as the validation of rectal swabs and the use of aerial drones to transport specimens to distant laboratories-now make remote testing feasible. The above innovations also open up the possibility of implementing quality systems through community-level diagnostic stewardship. Finally, strengthened laboratory networks actively support the feasibility of implementing quality-assured point-of-care testing where it is needed. IMPLICATIONS: Recent advances offer the present-day possibility of innovations to re-invent the relationship between distant reference laboratories and end-users for integrated diagnosis of NMFIs.status: publishe

    Diagnostic Bacteriology in District Hospitals in Sub-Saharan Africa: At the Forefront of the Containment of Antimicrobial Resistance

    No full text
    This review provides an update on the factors fuelling antimicrobial resistance and shows the impact of these factors in low-resource settings. We detail the challenges and barriers to integrating clinical bacteriology in hospitals in low-resource settings, as well as the opportunities provided by the recent capacity building efforts of national laboratory networks focused on vertical single-disease programmes. The programmes for HIV, tuberculosis and malaria have considerably improved laboratory medicine in Sub-Saharan Africa, paving the way for clinical bacteriology. Furthermore, special attention is paid to topics that are less familiar to the general medical community, such as the crucial role of regulatory frameworks for diagnostics and the educational profile required for a productive laboratory workforce in low-resource settings. Traditionally, clinical bacteriology laboratories have been a part of higher levels of care, and, as a result, they were poorly linked to clinical practices and thus underused. By establishing and consolidating clinical bacteriology laboratories at the hospital referral level in low-resource settings, routine patient care data can be collected for surveillance, antibiotic stewardship and infection prevention and control. Together, these activities form a synergistic tripartite effort at the frontline of the emergence and spread of multi-drug resistant bacteria. If challenges related to staff, funding, scale, and the specific nature of clinical bacteriology are prioritized, a major leap forward in the containment of antimicrobial resistance can be achieved. The mobilization of resources coordinated by national laboratory plans and interventions tailored by a good understanding of the hospital microcosm will be crucial to success, and further contributions will be made by market interventions and business models for diagnostic laboratories. The future clinical bacteriology laboratory in a low-resource setting will not be an “entry-level version” of its counterparts in high-resource settings, but a purpose-built, well-conceived, cost-effective and efficient diagnostic facility at the forefront of antimicrobial resistance containment.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore