28 research outputs found

    Fine Tuning the Pore Surface in Zirconium Metalāˆ’Organic Frameworks for Selective Ethane/Ethylene Separation

    Get PDF
    Ethylene is an important chemical feedstock for production of polymers and high-value organic chemicals, and yet its conventional purification process is plagued with high consumption of energy. Metalāˆ’organic frameworks (MOFs) provide a suitable adsorption platform for selective ethane/ ethylene separation thanks to their structural diversity, tunable pore characteristics, designable pore sizes, and high pore volumes. Although there are empirical design rules like avoiding open metal sites and creating nonpolar pore surfaces for development of adsorptive MOFs, it is still challenging to design robust MOFs that can realize direct ethane-selective separation. Herein, we systematically designed and synthesized three Zr-MOFs based on the assembly of angular ligands and 12-connected Zr6 clusters that feature the pcu network structure. By changing the size and flexibility of the substituent on the angular ligand, we were able to prevent interpenetration and identified NPF-802, which exhibits good C2H6/C2H4 separation performance that is attributed to the bulky and inert tert-butyl groups of its carbazole ligand. This work provides insights for design of ligands of MOFs with suitable pore environments to address important and challenging gas separations

    Disrupted Balance of Long- and Short-Range Functional Connectivity Density in Type 2 Diabetes Mellitus: A Resting-State fMRI Study

    Get PDF
    Previous studies have shown that type 2 diabetes mellitus (T2DM) can accelerate the rate of cognitive decline in patients. As an organ with high energy consumption, the brain network balances between lower energy consumption and higher information transmission efficiency. However, T2DM may modify the proportion of short- and long-range connections to adapt to the inadequate energy supply and to respond to various cognitive tasks under the energy pressure caused by homeostasis alterations in brain glucose metabolism. On the basis of the above theories, this study determined the abnormal functional connections of the brain in 32 T2DM patients compared with 32 healthy control (HC) subjects using long- and short-range functional connectivity density (FCD) analyses with resting-state fMRI data. The cognitive function level in these patients was also evaluated by neuropsychological tests. Moreover, the characteristics of abnormal FCD and their relationships with cognitive impairment were investigated in T2DM patients. Compared with the HC group, T2DM patients exhibited decreased long-range FCD in the left calcarine and left lingual gyrus and increased short-range FCD in the right angular gyrus and medial part of the left superior frontal gyrus (p < 0.05, Gaussian random-field theory corrected). In T2DM patients, the FCD z scores of the medial part of the left superior frontal gyrus were negatively correlated with the time cost in part B of the Trail Making Test (Ļ = -0.422, p = 0.018). In addition, the FCD z scores of the right angular gyrus were negatively correlated with the long-term delayed recall scores of the Auditory Verbal Learning Test (Ļ = -0.356, p = 0.049) and the forward scores of the Digital Span Test (Ļ = -0.373, p = 0.039). T2DM patients exhibited aberrant long-range and short-range FCD patterns, which may suggest brain network reorganization at the expense of losing the integration of long-range FCD to adapt to the deficiency in energy supply. These changes may be associated with cognitive decline in T2DM patients

    Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen

    No full text
    Mean residence time (MRT) of topsoil organic carbon is one critical parameter for predicting future land carbon sink dynamics. Large uncertainties remain about controls on the variability in global MRT of soil organic carbon. We estimated global MRT of topsoil (0-20 cm) organic carbon in terrestrial ecosystems and found that mean annual air temperature, annual precipitation, and topsoil nitrogen storage were responsible for the variability in MRT. An empirical climate and soil nitrogen-based (Clim&SN) model could be used to explain the temporal and spatial variability in MRT across various ecosystems. Estimated MRT was lowest in the low-latitude zones, and increased toward high-latitude zones. Global MRT of topsoil organic carbon showed a significant declining tendency between 1960 and 2008, particularly in the high-latitude zone of the northern hemisphere. The largest absolute and relative changes (0.2% per yr) in MRT of topsoil organic carbon from 1960 to 2008 occurred in high-latitude regions, consistent with large carbon stocks in, and greater degree of climate change being experienced by, these areas. Overall, global MRT anomalies (differences between MRT in each year and averaged value of MRT from 1960 to 2008) of terrestrial topsoil organic carbon were decreasing from 1960 to 2008. Global MRT anomalies decreased significantly (P<0.001) with the increase of global temperature anomalies, indicating that global warming resulted in faster turnover rates of topsoil organic carbon. (C) 2012 Elsevier B.V. All rights reserved

    Shrub encroachment alters plant trait response to nitrogen addition in a semi-arid grassland

    Get PDF
    Encroachment of shrubs over large regions of arid and semi-arid grassland can affect grassland traits and growth under a background of increasing nitrogen (N) deposition. However, the effects of N input rates on species traits and the growth of shrubs on grasslands remain unclear. We examined the effects of six different N addition rates on the traits of Leymus chinensis in an Inner Mongolia grassland encroached by the leguminous shrub, Caragana microphylla. We randomly selected 20 healthy L. chinensis tillers within shrubs and 20 tillers between shrubs in each plot, measuring the plant height, number of leaves, leaf area, leaf N concentration per unit mass (LNCmass), and aboveground biomass. Our results showed that N addition significantly enhanced the LNCmass of L. chinensis. The aboveground biomass, heights, LNCmass, leaf area, and leaf number of plants within the shrubs were higher than those between shrubs. For L. chinensis growing between shrubs, the LNCmass and leaf area increased with N addition rates, leaf number and plant height had binomial linear relationships to N addition rates. However, the number of leaves, leaf areas and heights of plants within shrubs did not vary under various N addition rates. Structural Equation Modelling revealed N addition had an indirect effect on the leaf dry mass through the accumulation of LNCmass. These results indicate that the response of dominant species to N addition could be regulated by shrub encroachment and provide new insights into management of shrub encroached grassland in the context of N deposition

    High mobility group AT-hook 2 and c-MYC as potential prognostic factors in pancreatic ductal adenocarcinoma

    No full text
    The present study investigated if c-MYC and high mobility group AT-hook 2 (HMGA2) expression was associated with prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). A total of 102 patients undergoing surgery for PDAC were retrospectively reviewed. Immunohistochemistry was used to detect c-MYC and HMGA2 protein expression in PDAC and peritumoral tissue samples. Expression of c-MYC and HMGA2 was associated with clinicopathological characteristics and prognoses of patients with PDAC using multivariate analysis. HMGA2 and c-MYC protein expression was significantly higher in PDAC tissues compared with peritumoral tissue (P<0.001). HMGA2 and c-MYC expression was also significantly higher in patients with PDAC who had lymph node metastasis, invasion of regional tissues and tumor node metastasis (TNM) stage III or IV disease compared with those who had no lymph node metastasis, no invasion of regional tissues and TNM stage I or II disease (P<0.001). Multivariate logistic regression analysis was used to identify TNM stage (P=0.007) and invasion (P=0.003) as significant independent predictors of c-MYC expression (model AUC=0.8201), and lymph node metastasis (P=0.002) and invasion (P=0.003) as significant independent predictors of HMGA2 expression (model AUC=0.7638). Cox multivariate analysis showed that expression of c-MYC (P=0.019) and HMGA2 (P<0.001), TNM stage (P=0.014) and lymph node metastasis (P=0.032) were associated with reduced overall survival time. HMGA2 and c-MYC may be important biological markers and potential therapeutic targets involved in the tumorigenesis, metastasis, invasion and prognosis of PDAC

    Grazing Altered the Pattern of Woody Plants and Shrub Encroachment in a Temperate Savanna Ecosystem

    No full text
    Ulmus pumila-dominated temperate savanna is an important tree-grass complex ecosystem in the Otindag sand land, northern China. To date, few investigations have been undertaken on the spatial patterns and structure of this ecosystem and its driving factors under different grazing pressures. The objective of our study therefore is to explore whether grazing has affected the population structure/pattern of woody plants and shrub encroachment in a temperate savanna ecosystem. Results indicate that species richness and seedlings decreased with increasing grazing pressure. An increase in grazing pressure did not significantly affect adult-tree density, but it hindered the normal regeneration of U. pumila seedlings, further inducing population decline. U. pumila seedlings had a more significant aggregated distribution than juvenile or adult trees. The adult and juvenile trees had an aggregated distribution at the small scale and a random distribution at the large scale. Shrubs also showed a significant aggregated distribution. No clear effect on the spatial patterns of adult trees was observed; however, there was a noticeable effect for juveniles and seedlings under different grazing pressures. U. pumila seedlings had a positive association with their juveniles and Spiraea aquilegifolia, but a negative association with Caragana microphylla. Shrub encroachment occurred with decreasing grazing pressures. In conclusion, overgrazing led to the decline of U. pumila population, but the decrease in grazing pressure increased shrub encroachment in the temperate savanna ecosystem. Moderate grazing management may be a better way to enhance the stability of U. pumila population and reduce shrub encroachment

    Lead-induced cardiomyocytes apoptosis by inhibiting gap junction intercellular communication via autophagy activation

    No full text
    Lead (Pb) is one of the most common heavy metal contaminants in the environment. Pb can cause pathophysiological changes in several organ systems, including the cardiovascular system, but the molecular mechanism remains elusive. The study aimed to study the effects of Pb on Gap junction intercellular communication (GJIC) and its role in Pb-induced apoptosis. The present study aims to determine whether Pb-induced autophagy promotes apoptosis of rat cardiac myocytes (H9c2\ua0cells) by downregulating GJIC using CCK-8 Kit, scrape loading/dye transfer assay, Annexin V/PI assays, Western blot analysis and double-immunofluorescence experiments. The results showed that Pb elicited cytotoxicity in a time- and concentration-dependent manner and led to increased apoptosis in a concentration-dependent manner in\ua0H9c2\ua0cells. Pb also reduced GJIC in\ua0H9c2\ua0cells in a concentration-dependent manner through the downregulation of connexin (Cx) 43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium (CBX) resulted in increased apoptosis. Furthermore, Pb increased autophagy in a concentration-dependent manner in\ua0H9c2\ua0cells, promoting the internalization of Cx43 and targeting the autophagosome via light chain 3 (LC3). However, autophagy inhibitor 3-Methyladenine (3-MA) can slow down the downregulation of Cx43 induced by Pb in\ua0H9c2\ua0cells. In conclusion, our results provide that Pb-decreased GJIC promotes apoptosis in cardiomyocytes. It is probably because Pb-induced autophagy exacerbates GJIC inhibition and downregulation of Cx43. These results suggest that GJIC plays a protective role in Pb-induced apoptosis in rat cardiomyocytes, and GJIC may be one of the targets of Pb-induced biological effects

    Cross-sectional study of expression of divalent metal transporter-1, transferrin, and hepcidin in blood of smelters who are occupationally exposed to manganese

    No full text
    Background Manganese (Mn) is widely used in industries including the manufacture of Mn-iron (Fe) alloy. Occupational Mn overexposure causes manganism. Mn is known to affect Fe metabolism; this study was designed to test the hypothesis that workers exposed to Mn may have an altered expression of mRNAs encoding proteins in Fe metabolism. Methods Workers occupationally exposed to Mn (n = 71) from a Mnā€“Fe alloy factory and control workers without Mn-exposure (n = 48) from a pig-iron plant from Zunyi, China, were recruited for this study. Blood samples were collected into Trizol-containing tubes. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis. Metal concentrations were quantified by atomic absorption spectrophotometry. Results Working environment and genetic background of both groups were similar except for marked differences in airborne Mn concentrations (0.18 mg/m3 in Mnā€“Fe alloy factory vs. 0.0022 mg/m3 in pig-Fe plant), and in blood Mn levels (34.3 Āµg/L vs. 10.4 Āµg/L). Mn exposure caused a significant decrease in the expression of divalent metal transporter-1 (DMT1), transferrin (Tf) and hepcidin by 58.2%, 68.5% and 61.5%, respectively, as compared to controls, while the expression of transferrin receptor (TfR) was unaltered. Linear regression analysis revealed that expressions of DMT1, Tf and hepcidin were inversely correlated with the accumulative Mn exposure; the correlation coefficients (r) are āˆ’0.47, āˆ’0.54, and āˆ’0.49, respectively (p < 0.01). Conclusion The data suggest that occupational Mn exposure causes decreased expressions of DMT1, Tf and hepcidin in blood cells; the finding will help understand the mechanism underlying Mn exposure-associated alteration in Fe homeostasis among workers
    corecore