206 research outputs found

    Communication in supplier relationships: the case of Finnish sourcing in China

    Get PDF
    Objective of the study: The objective of the study was to research the supplier relationship management in a case company from the perspective of business communication. The case company was a Finnish buyer organization and its supplier was a Chinese company in the health food industry. The study evaluated their relationship and investigated their communication through two research questions: (1) What kind of challenges can be identified in the relationship between the Finnish buyer and the Chinese supplier company? In what processes of sourcing do they emerge? (2) What communicative strategies do the Finnish buyer and Chinese supplier use to overcome the challenges? What are their perceptions of communicative compromises and communicative effectiveness? Methodology and theoretical framework: The data in the qualitative single case study was mainly collected by conducting three semi-structured interviews with representatives from the buyer and the supplier company. As supplementary data, emails between two interviewees in a two-week period were sorted into a corpus for content analysis. The theoretical framework was established on the basis of SeppÀlÀ's supplier relationship research model in order to investigate the relationship status between the case organizations. Communication between the case organizations was examined from the cultural, language and interpersonal dimensions. Findings and conclusions: The findings of the study indicated the challenges of the case supplier relationship. Firstly, the production time was not fully controlled by the supplier and the information exchange about the delivery delay cases was not efficient and timely. Secondly, the Chinese buyer's email communication on troublesome issues was indirect. Thirdly, managing the sourcing quality of product packages was challenging due to the different cultural aesthetics. Fourthly, BELF was not a barrier for daily communication but the Chinese supplier's inadequate BELF competence impacted the explanation on technical issues and the expression of emotions. Fifthly, the Finnish buyer committed to the relationship relatively less than the Chinese supplier. The findings also showed that the Finnish supplier had made repeated efforts to communicate their requirements on email communication and package quality. In addition, the communication on time management was not effective and aroused temporary intensity in the relationship. It was also observed that both Chinese and Finns had compromised to the counterpart's communication style and culture to some extent. However, at a general level, effective interpersonal communication was a significant positive determinant for their relationship, especially for resolving business and interpersonal disputes

    Multiscale topology classifies and quantifies cell types in subcellular spatial transcriptomics

    Full text link
    Spatial transcriptomics has the potential to transform our understanding of RNA expression in tissues. Classical array-based technologies produce multiple-cell-scale measurements requiring deconvolution to recover single cell information. However, rapid advances in subcellular measurement of RNA expression at whole-transcriptome depth necessitate a fundamentally different approach. To integrate single-cell RNA-seq data with nanoscale spatial transcriptomics, we present a topological method for automatic cell type identification (TopACT). Unlike popular decomposition approaches to multicellular resolution data, TopACT is able to pinpoint the spatial locations of individual sparsely dispersed cells without prior knowledge of cell boundaries. Pairing TopACT with multiparameter persistent homology landscapes predicts immune cells forming a peripheral ring structure within kidney glomeruli in a murine model of lupus nephritis, which we experimentally validate with immunofluorescent imaging. The proposed topological data analysis unifies multiple biological scales, from subcellular gene expression to multicellular tissue organization.Comment: Main text: 8 pages, 4 figures. Supplement: 12 pages, 5 figure

    Mussel-Inspired Carboxymethyl Chitosan Hydrogel Coating of Titanium Alloy with Antibacterial and Bioactive Properties

    Get PDF
    Infection-related titanium implant failure rates remain exceedingly high in the clinic. Functional surface coating represents a very promising strategy to improve the antibacterial and bioactive properties of titanium alloy implants. Here, we describe a novel bioactive surface coating that consists of a mussel-inspired carboxymethyl chitosan hydrogel loaded with silver nanoparticles (AgNPs) to enhance the bioactive properties of the titanium alloy. The preparation of hydrogel is based on gallic acid grafted carboxymethyl chitosan (CMCS-GA) catalyzed by DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride). To build a firm bonding between the hydrogel and titanium alloy plate, a polydopamine layer was introduced onto the surface of the titanium alloy. With HRP/H2O2 catalysis, CMCS-GA can simply form a firm gel layer on the titanium alloy plate through the catechol groups. The surface properties of titanium alloy were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle. Silver nanoparticles were loaded into the gel layer by in situ reduction to enhance the antibacterial properties. In vitro antibacterial and cell viability experiments showed that the AgNPs-loaded Ti-gel possesses excellent antibacterial properties and did not affect the proliferation of rabbit mesenchymal stem cells (MSCs)

    Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide-propylene oxide demulsifier

    Get PDF
    The demulsification mechanism of asphaltene-stabilized water-in-toluene emulsions by an ethylene-oxide-propylene oxide (EO-PO) based polymeric demulsifier was studied. Demulsification efficiency was determined by bottle tests and correlated to the physicochemical properties of asphaltene interfacial films after demulsifier addition. From bottle tests and droplet coalescence experiments, the demulsifier showed an optimal performance at 2.3 ppm (mass basis) in toluene. At high concentrations, the demulsification performance deteriorated due to the intrinsic stabilizing capacity of the demulsifier, which was attributed to steric repulsion between water droplets. Addition of demulsifier was shown to soften the asphaltene film (i.e., reduce the viscoelastic moduli of asphaltene films) under both shear and compressional interfacial deformations. Study of the macrostructures and the chemical composition of asphaltene film at the toluene-water interface after demulsifier addition demonstrated gradual penetration of the demulsifier into the asphaltene film. Demulsifier penetration in the asphaltene film changed the asphaltene interfacial mobility and morphology, as probed with Brewster angle and atomic force microscopy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Angiopoietin-like protein 4 regulates breast muscle lipid metabolism in broilers

    No full text
    ABSTRACT: The objective of this study was to determine the effects of angiopoietin-like protein 4 (ANGPTL4) on breast muscle lipid metabolism in broilers. In experiment 1, 36 thirty-five-day-old male Arbor Acres broilers were randomly allocated into 6 treatment groups with 6 birds in a completely randomized design. The broilers were subjected to intravenous injection of His-SUMO-ANGPTL4 at the dose of 0 (injection of normal saline [NS]), 20, 100, 500, 2,500, or 12,500 ng/kg BW, respectively. The results showed that broilers at 30 min after His-SUMO-ANGPTL4 at the level of 12,500 ng/kg BW intravenous injection had higher (P < 0.05) concentrations of triglyceride and non-esterified fatty acid in the serum, higher (P < 0.05) adipose triglyceride lipase and carnitine palmitoyltransferase 1 mRNA expression in the breast muscle, but lower (P < 0.05) lipoprotein lipase (LPL) mRNA expression in the breast muscle. In experiment 2, 18 thirty-five-day-old male Arbor Acres broilers were randomly allocated into 3 treatment groups with 6 birds in a completely randomized design. The broilers were subjected to intravenous injection of NS, His-SUMO, or His-SUMO-ANGPTL4 (12,500 ng/kg BW) in order to rule out the effect of His-SUMO tag. It's confirmed that ANGPTL4 could increase (P < 0.05) concentrations of triglyceride and non-esterified fatty acid in the serum, enhance (P < 0.05) adipose triglyceride lipase mRNA expression in the breast muscle, and decrease (P < 0.05) LPL mRNA expression in the breast muscle. In experiment 3 and 4, co-culture experiments of chicken primary myoblasts and NS, His-SUMO, or His-SUMO-ANGPTL4 (250 pg/mL, physiological dose) were set up to monitor the cytotoxicity of ANGPTL4 and the changes of lipid metabolism-related genes expression. It was found that cell viability was not affected but LPL mRNA expression in chicken primary myoblasts was highly reduced (P < 0.05) by ANGPTL4. In conclusion, ANGPTL4 could promote lipodieresis and inhibit LPL in the breast muscle of broilers

    Morphologic Damage of Rat Alveolar Epithelial Type II Cells Induced by Bile Acids Could Be Ameliorated by Farnesoid X Receptor Inhibitor Z-Guggulsterone In Vitro

    No full text
    Objective. To determine whether bile acids (BAs) affect respiratory functions through the farnesoid X receptor (FXR) expressed in the lungs and to explore the possible mechanisms of BAs-induced respiratory disorder. Methods. Primary cultured alveolar epithelial type II cells (AECIIs) of rat were treated with different concentrations of chenodeoxycholic acid (CDCA) in the presence or absence of FXR inhibitor Z-guggulsterone (GS). Then, expression of FXR in nuclei of AECIIs was assessed by immunofluorescence microscopy. And ultrastructural changes of the cells were observed under transmission electron microscope and analyzed by Image-Pro Plus software. Results. Morphologic damage of AECIIs was exhibited in high BAs group in vitro, with high-level expression of FXR, while FXR inhibitor GS could attenuate the cytotoxicity of BAs to AECIIs. Conclusions. FXR expression was related to the morphologic damage of AECIIs induced by BAs, thus influencing respiratory functions

    Molecular mechanisms of Thrombospondin-2 modulates tumor vasculogenic mimicry by PI3K/AKT/mTOR signaling pathway

    No full text
    Vasculogenic mimicry (VM) differs from the classical tumor angiogenesis model. VM does not depend on endothelial cells; instead, highly aggressive tumor cells mimic endothelial cells to form a vascular-like channel structure. VM mediated by tumor cells is significantly and positively associated with a poor prognosis and low survival rates in patients with highly aggressive cancer. In the treatment of highly aggressive malignancies, the presence of VM is considered an important reason for the unsatisfactory clinical efficacy of anti-tumor–angiogenesis therapy (e.g., therapy targeting vascular endothelial growth factor A). Many targeted therapeutic drugs based on traditional tumor blood vessels have been used clinically. Although some progress has been made in certain tumors, problems such as drug resistance have restricted the expected therapeutic effects. Thrombospondin 2 (THBS2) is one of the most important genes associated with angiogenesis, and this gene exerts angiogenesis-related functions through the PI3K/AKT signaling pathway. Although the PI3K/AKT/mTOR signaling pathway is closely related to the progression of VM, the mechanism by which the promising biomarker THBS2 participates in and regulates tumor VM by activating the PI3K/AKT/mTOR signaling pathway is unclear. In this review, we analyze the monomer structure and biological activity of THBS2, the structure and potential synthesis mechanisms of VM, and the complex mechanisms between THBS2, the PI3K/AKT/mTOR signaling pathway, and VM

    Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet

    No full text
    The aim of the present work was to investigate the effects of feeding regimens (pasture vs. mixed diet) on meat quality, fatty acids, volatile compounds, and antioxidant properties in lamb meat. In total, 24 lambs were allotted into two feeding regimens at 10.23 kg live weight. Lambs were fed on pasture grass (PG group, n = 12) or mixed diet (M group, n = 12). Longissimus thoracis (LT) muscle samples from the M group had a higher intramuscular fat (IMF) (p &lt; 0.05), pH45minvalue (p &lt; 0.01), and ash (p &lt; 0.05) than the PG group. In contrast, the shear force (p &lt; 0.05), L*(p &lt; 0.05), and b* (p &lt; 0.001) in M group were lower than in PG group. Analyses indicated that PG group contained higher linolenic acid (C18:3n3) and docosatrienoic acid (C22:3n6) (p &lt; 0.05) than the M group. Major volatile compounds in the muscles included hexanal, heptanal, nonanal, octanal, 1‐pentanol, 1‐hexanol, 1‐octen‐3‐ol, and 2,3‐octanedione. The levels of hexanal, nonanal, and 2,3‐octanedione were significantly lower in PG lamb muscle (p &lt; 0.01). In contrast, 1‐pentanol and 1‐hexanol levels were higher in M lamb muscle (p &lt; 0.01). Muscle from PG lamb exhibited higher catalase (CAT) and glutathione peroxidase (GPx) activity (p &lt; 0.05). PG muscle also contained a higher radical‐scavenging ability (RSA; p &lt; 0.001) and cupric‐reducing antioxidant capacity (CUPRAC; p &lt; 0.05). Overall, the improved antioxidant status in PG muscle inhibited lipid peroxidation (aldehydes and ketones), thereby improving the meat quality
    • 

    corecore