20 research outputs found

    Effect of Lactobacillus acidophilus M6 on Improving Exercise Performance and Relieving Fatigue in Mice

    Get PDF
    Objective: To isolate Lactobacillus acidophilus M6 from the feces of long-distance runners in the early stage. The aim of this study was to investigate the effect of Lactobacillus acidophilus M6 on improving exercise ability and alleviating fatigue function in mice. Methods: Sixty C57BL/6N male mice were randomly divided into 4 groups: Control, low, medium and high dose groups of L. acidophilus M6, L. acidophilus M6 was given daily for four weeks, muscle strength, exercise endurance, fatigue related indicators, energy related indicators and antioxidant related indicators were measured. Results: The low, medium and high dose of L. acidophilus M6 significantly (P<0.001) improved the forelimb grip strength (124.01±6.02, 132.02±4.30 and 139.66±4.72 g) and exhaustive swimming time (8.03±1.05, 10.06±1.10 and 14.36±0.55 min). The low, medium and high dose of L. acidophilus M6 significantly (P<0.001) reduced the fatigue indexes including the creatine kinase activity (730.66±16.77, 647.66±39.95 and 594.56±32.33 U/L), serum lactic acid (10.13±1.00, 8.36±0.99 and 6.09±0.36 mol/L), serum urea nitrogen (6.40±0.53, 5.96±0.85 and 5.23±0.25 nmol/L) and blood ammonia (115.34±4.50, 99.67±4.50 and 94.33±4.72 μmol/L). L. acidophilus M6 significantly (P<0.001) improved energy metabolism indexes including increasing blood glucose, muscle glycogen and liver glycogen, and significantly (P<0.001) reducing triglyceride content in a dose-dependent manner. L. acidophilus M6 significantly (P<0.001) increased the activity of serum superoxide dismutase, catalase and glutathione peroxidase and decreased the content of malondialdehyde in mice in a dose-dependent manner at the range from 3×107 CFU to 3×109 CFU. Conclusion: L. acidophilus M6 could improve exercise performance and relieve fatigue after exercise in mice by improving the grip strength of forelimbs and the exhaustion swimming time, and increase the indexes related to energy metabolism and antioxidant capacity by decreasing the fatigue indexes such as creatine kinase activity, lactic acid, urea nitrogen and blood ammonia

    Anti-diabetic effect of red quinoa polysaccharide on type 2 diabetic mellitus mice induced by streptozotocin and high-fat diet

    Get PDF
    The purpose of this study was to explore the mechanism of red quinoa polysaccharide (RQP) in alleviating type 2 diabetes (T2D) through in vivo and in vitro experiments. Results of HPLC and FITR showed that RQP was a complex polysaccharide and contained more glucose, galactose and acarbose. In vitro experiments, RQP showed strong antioxidant capacity and inhibition on α-amylase and α-glucosidase. In vivo experiments, RQP was proved to induce a significant improvement of diabetes after 4 weeks of ingestion, including the abilities of lowering blood glucose, regulating lipid metabolism, anti-oxidation and promoting secretion of SCFAs. Furthermore, 16S rRNA study demonstrated that RQP transformed the intestinal microbiota composition in diabetic mice, decreased the abundance of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group, and increased the relative abundance of Akkermansia, unclassified_f_Lachnospiraceae, norank_f_Eubacterium_coprostanoligenes_group, unclassified_f_Atopobiaceae and norank_f_Lachnospiraceae. The biosynthetic pathways, metabolic pathways and intestinal microbiome phenotypes in mice also changed accordingly. In conclusion, this study suggests that RQP can inhibit the development of diabetes by correcting the imbalance of intestinal flora

    Table_1_Anti-diabetic effect of red quinoa polysaccharide on type 2 diabetic mellitus mice induced by streptozotocin and high-fat diet.DOCX

    No full text
    The purpose of this study was to explore the mechanism of red quinoa polysaccharide (RQP) in alleviating type 2 diabetes (T2D) through in vivo and in vitro experiments. Results of HPLC and FITR showed that RQP was a complex polysaccharide and contained more glucose, galactose and acarbose. In vitro experiments, RQP showed strong antioxidant capacity and inhibition on α-amylase and α-glucosidase. In vivo experiments, RQP was proved to induce a significant improvement of diabetes after 4 weeks of ingestion, including the abilities of lowering blood glucose, regulating lipid metabolism, anti-oxidation and promoting secretion of SCFAs. Furthermore, 16S rRNA study demonstrated that RQP transformed the intestinal microbiota composition in diabetic mice, decreased the abundance of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group, and increased the relative abundance of Akkermansia, unclassified_f_Lachnospiraceae, norank_f_Eubacterium_coprostanoligenes_group, unclassified_f_Atopobiaceae and norank_f_Lachnospiraceae. The biosynthetic pathways, metabolic pathways and intestinal microbiome phenotypes in mice also changed accordingly. In conclusion, this study suggests that RQP can inhibit the development of diabetes by correcting the imbalance of intestinal flora.</p

    Development of College Students' Innovation and Entrepreneurship Ability under the Model of Personalized Education

    No full text
    The essence of personalized education is an innovative education that respects individual differences. With the continuous evolution of the times, the ability of innovation and entrepreneurship has become the key to reflecting comprehensive national strength. In response to the call of China to build an "innovative country", colleges and universities should cultivate students' individualized thinking and methods and abilities to solve problems on the basis of respecting the creativity and subjectivity of college students, and lay a solid foundation for students' future innovation and entrepreneurship. In this paper, the present situation of students' independent development promoted by personalized education at home and abroad was analyzed firstly, and the existing problems and solutions were pointed out. The study aims to contribute to the acceleration of China's innovation-driven development

    Identification of the Potential Genes Regulating Seed Germination Speed in Maize

    No full text
    Seed germination is the crucial stage in plant life cycle. Rapid and uniform germination plays an essential role in plant development and grain yield improvement. However, the molecular mechanism underlying seed germination speed is largely unknown due to the complexity of the dynamic process and the difficulty in phenotyping. Here, we conducted a time-series comparative transcriptome study of two elite maize inbred lines, 72-3 and F9721, with striking difference in seed germination speed, and identified a major locus underlying maize germination speed through genome-wide association analysis (GWAS) of an F2 segregation population. Comparative transcriptome study identified 12 h after imbibition (HAI) as the critical stage responsible for the variation in germination speed. The differentially expressed genes (DEGs) between 72-3 and F9721 were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, oxidoreductase activity pathways, hormone signal transduction, and amino acid transporter activity pathways. GWAS revealed that germination speed was controlled by a major locus on chromosome 1 with the leading SNP as AX-91332814, explaining 10.63% of phenotypic variation. A total of 87 proposed protein-coding genes surrounding the locus were integrated with DEGs. Combined with evidence from the gene expression database and gene synteny with other model species, we finally anchored three genes as the likely candidates regulating germination speed in maize. This study provides clues for the further exploration of genes controlling the maize seed germination speed, thus facilitating breeding of rapid germinated elite lines through marker assistant selection

    Late Mesozoic magmatism and metallogeny in NE China: The Sandaowanzi–Beidagou example

    No full text
    <p>The Sandaowanzi (>22t Au) and Beidagou (>5t Au) tellurium–gold deposits are located in the northeastern Central Asian Orogenic Belt (Heilongjiang Province, NE China). The ore-hosting volcanic rocks unconformably overly monzogranite and were intruded by adakitic granodiorite. In this study, we report new-age, geochemical, and Sr–Nd–Pb isotopic data to elucidate the genetic link between the igneous rocks and the Te–Au mineralization. New-age data indicate that local magmatism occurred in the Early Jurassic (ca. 177.2 Ma) and Early Cretaceous (ca. 118.7 − 122.0 Ma). Geochemically, the igneous rocks are enriched in LREEs, Pb, K, and U, and depleted in Nb, P, and Ti, showing calc-alkaline affinity. The Early Jurassic monzogranite rocks are featured by <sup>87</sup>Sr/<sup>86</sup>Sr = 0.7111−0.7118; <i>ε</i><sub>Nd</sub>(<i>t</i>) = −4.6 to −4.7; <sup>206</sup>Pb/<sup>204</sup>Pb = 18.098−18.102, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.558−15.580, and <sup>208</sup>Pb/<sup>204</sup>Pb = 37.781−37.928, whereas the Early Cretaceous adakitic granodiorite contains: <sup>87</sup>Sr/<sup>86</sup>Sr = 0.7071−0.7073; <i>ε</i><sub>Nd</sub>(<i>t</i>) = − 3.4 to −3.2; <sup>206</sup>Pb/<sup>204</sup>Pb = 17.991−18.080, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.483−15.508, and <sup>208</sup>Pb/<sup>204</sup>Pb = 37.938−37.985. Initial isotopic ratios for the Early Cretaceous volcanic rocks: <sup>87</sup>Sr/<sup>86</sup>Sr = 0.7061−0.7087; <i>ε</i><sub>Nd</sub>(<i>t</i>) = − 3.6 to −2.9; <sup>206</sup>Pb/<sup>204</sup>Pb = 18.136−18.199, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.512−15.628, and <sup>208</sup>Pb/<sup>204</sup>Pb = 38.064−38.155. The pyrite, chalcopyrite, and telluride grains yielded δ<sup>34</sup>S of −6.52 ‰ to 2.13 ‰ (mean = − 0.82 ‰) and <i>δ</i><sup>13</sup>C<sub>PDB</sub> of the calcite samples are in the range of −6.64 ‰ to −5.24 ‰, implying the ore materials were derived from mantle. The geochemical and isotopic results indicate that primary melts of Late Mesozoic magmatic rocks have features by partial melting of the continental crust. The adakitic rocks may have been the products of the thickened lower crustal delamination and the subsequent asthenospheric upwelling during the intra-continental extension in NE China. Regionally, intrusive activity and molybdenum mineralization during the Jurassic was affected by subduction setting, whereas gold mineralization was controlled by the Early Cretaceous tectonothermal events associated with a superposition extension.</p

    Quality Characteristics and Anthocyanin Profiles of Different Vitis amurensis Grape Cultivars and Hybrids from Chinese Germplasm

    No full text
    To evaluate the important Vitis amurensis germplasm, the quality characteristics and anthocyanin profiles of the ripe berries of 20 V. amurensis grapes and 11 interspecific hybrids in two consecutive years were analysed. Compared with the V. vinifera grapes, V. amurensis grapes had small berries with low total soluble solids and high titratable acids, and were richer in phenolic compounds except for flanan-3-ols in their skins but had lower phenolic contents in their seeds and showed lower antioxidant activities. An outstanding feature of the V. amurensis grapes was their abundant anthocyanin contents, which was 8.18-fold higher than the three wine grapes of V. vinifera. The anthocyanin composition of V. amurensis was characterized by an extremely high proportion of diglucoside anthocyanins (91.71%) and low acylated anthocyanins (0.04%). Interestingly, a new type of speculated 3,5,7-O-triglucoside anthocyanins was first identified and only detected in V. amurensis grapes and hybrids. Based on the total phenolic and anthocyanin characteristics, V. amurensis grapes were set apart from V. vinifera cultivars and the interspecific hybrids, for the same qualities, fell between them, as assessed by principal component analysis
    corecore