128 research outputs found

    Effects of the Aidi Dripping Pills on Immune Functions of the Tumor-bearing Mouse

    Get PDF
    ObjectiveTo study the effects of Aidi Dripping Pills on immune functions of the tumor-bearing mouse on the basis of the previous experimental studies on its tumor-inhibiting and life-prolonging effects.MethodsBy using the transplantation tumor mouse models, the effects of Aidi Dripping Pills on the lymphocyte transformation rate and the hemolysin formation in the S180 tumor-bearing mice, and on the phagocytic function of macrophages in the abdominal cavity of H22 tumor-bearing mice were investigated.ResultsIn the 2.25 g/kg and 1.125 g/kg Aidi Dripping Pills groups, the lymphocyte transformation rates in the S180 tumor-bearing mice were significantly higher than that of the control group (P<0.01). In all the Aidi Dripping Pills groups, HC50 significantly increased (P<0.01 or P<0.05), carbon granular clearance significantly raised, and both the phagocytic index and phagocytic coefficient were significantly higher than those in the control group (P<0.01 or P<0.05).ConclusionThe Aidi Dripping Pills can significantly increase the cellular immune function, the humoral immune function and the phagocytic function of the mononuclear-macrophages, so it may show anti-tumor effects by enhancing the function of the reticuloendothelial system

    TMA: Temporal Motion Aggregation for Event-based Optical Flow

    Full text link
    Event cameras have the ability to record continuous and detailed trajectories of objects with high temporal resolution, thereby providing intuitive motion cues for optical flow estimation. Nevertheless, most existing learning-based approaches for event optical flow estimation directly remould the paradigm of conventional images by representing the consecutive event stream as static frames, ignoring the inherent temporal continuity of event data. In this paper, we argue that temporal continuity is a vital element of event-based optical flow and propose a novel Temporal Motion Aggregation (TMA) approach to unlock its potential. Technically, TMA comprises three components: an event splitting strategy to incorporate intermediate motion information underlying the temporal context, a linear lookup strategy to align temporally fine-grained motion features and a novel motion pattern aggregation module to emphasize consistent patterns for motion feature enhancement. By incorporating temporally fine-grained motion information, TMA can derive better flow estimates than existing methods at early stages, which not only enables TMA to obtain more accurate final predictions, but also greatly reduces the demand for a number of refinements. Extensive experiments on DSEC-Flow and MVSEC datasets verify the effectiveness and superiority of our TMA. Remarkably, compared to E-RAFT, TMA achieves a 6\% improvement in accuracy and a 40\% reduction in inference time on DSEC-Flow. Code will be available at \url{https://github.com/ispc-lab/TMA}.Comment: Accepted by ICCV202

    Variable-rate, variable-power network-coded-QAM/PSK for bi-directional relaying over fading channels

    No full text
    Network coded modulation (NCM) holds the promise of significantly improving the efficiency of two-way wireless relaying. In this contribution, we propose near instantaneously adaptive variable-rate, variable-power QAM/PSK for NC-aided decode-and-forward two-way relaying (DF-TWR) to maximize the average throughput. The proposed scheme is optimized subject to both average-power and bit-error-ratio (BER) constraints. Based on the BER bounds, we investigate a discrete-rate adaptation scheme, relying on a pair of solutions proposed for maximizing the spectral efficiency of the network. We then derive a closed-form solution based power adaptation policy for a continuous-rate scheme and quantify the signal-to-noise ratio (SNR) loss imposed by NC-QAM. Our simulation results demonstrate that the proposed discrete adaptive NC-QAM/PSK schemes are capable of attaining a higher spectral efficiency than their fixed-power counterparts

    Ag+ colorimetric sensor based on graphene oxide/nano-platinum composite

    Get PDF
    With the development of society, pollution accidents occur more frequently, and the efects of toxic substances containing silver on human health and environment are increasingly extensive. Therefore, the real-time on-site monitoring of silver ions is urgently needed. Based on the catalase-like properties of graphene/nano-platinum composites and the coupling efect between Pt and Ag+, a simple, unlabeled colorimetric sensing method is proposed to achieve the quantitative detection of Ag+. Under optimal conditions, the detection range of Ag+ by this colorimetric sensing method is 0.5–1000 μM, and the detection limit is 0.5 μM, which is lower than the previously reported detection limit of unlabeled Ag+ colorimetric sensing method, showing higher sensitivity and detection range. Under the same conditions, the sensor has almost no response to interference ions, showing good specifc recognition ability. In addition, the colorimetric sensing method can be used to detect Ag+ in actual water samples, serving as a new paradigm for visual detection of Ag+

    Linking drought indices to impacts in the Liaoning province of China

    Get PDF
    Drought is an inherent meteorological characteristic of any given region, but is particularly important in China due to its monsoon climate and the “three ladder” landform system. The Chinese government has constructed large-scale water conservation projects since 1949, and developed drought and water scarcity relief frameworks. However, drought still causes huge impacts on water supply, environment and agriculture. China has, therefore, created specialized agencies for drought management called Flood Control and Drought Relief Headquarters, which include four different levels: state, provincial, municipal and county. The impact datasets they collect provide an effective resource for drought vulnerability assessment, and provide validation options for hydro-meteorological indices used in risk assessment and drought monitoring. In this study, we use the statistical drought impact data collected by the Liaoning province Drought Relief Headquarter and meteorological drought indices (Standardized Precipitation Index, SPI and Standard Precipitation Evaporation Index, SPEI) to explore a potential relationship between drought impacts and these indices. The results show that SPI-24 and SPEI-24 are highly correlated to the populations that have difficulties in obtaining drinking water in four out of the six cities studied. Three impacts related to reservoirs and the availability of drinking water for humans and livestock exhibit strong correlations with SPI and SPEI of different accumulated periods. Results reveal that meteorological indices used for drought monitoring and early warning in China can be effectively linked to drought impacts. Further work is exploring how this information can be used to optimize drought monitoring and risk assessment in the whole Liaoning province and elsewhere in China

    Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China

    Get PDF
    Drought risk assessment is a vital part of drought risk management, which plays an important role in drought mitigation. Due to its complexity, drought risk is difficult to define and challenging to quantitatively assess, as the drought impacts associate with many social sectors. This contribution method the issue by quantitatively evaluating the yield loss due to drought as a function of the drought severity indicator in Liaoning province, China for spring maize using logarithmic regression. As crop water deficit is essence to identify agricultural drought, it developed a drought severity indicator using the crop water stress coefficient and duration. The Agricultural Production Systems sIMulator (APSIM) crop model was employed to simulate the spring maize growth to obtain daily water deficit during the growth period (May to September) and yield. The relationship between drought severity frequency and yield loss rate due to drought was established to assess the drought risk of spring maize when drought severity frequency is equal to 20%, 10%, 5% and 2%. The results show that Chaoyang and Fuxin have the highest drought risk in four levels of drought severity frequency whilst the lowest drought risk was identified in Tieling. The central Liaoning province has a moderate drought risk. For a specific drought severity frequency, drought risk increases from east to west in Liaoning province whilst it varies in each city at different drought severities. This method can predict yield loss due to drought for drought early warning. Drought risk maps presents spatial characteristics that can help to agricultural drought mitigation and the development of drought preparedness plan in Liaoning province

    Rap2B promotes proliferation, migration and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway

    Get PDF
    Rap2B, a member of GTP-binding proteins, is widely upregulated in many types of tumors and promotes migration and invasion of human suprarenal epithelioma. However, the function of Rap2B in breast cancer is unknown. Expression of Rap2B was examined in breast cancer cell lines and human normal breast cell line using Western blot analysis. Using the CCK-8 cell proliferation assay, cell cycle analysis, and transwell migration assay, we also elucidated the role of Rap2B in breast cancer cell proliferation, migration, and invasion. Results showed that the expression of Rap2B is higher in tumor cells than in normal cells. Flow cytometry and Western blot analysis revealed that Rap2B elevates the intracellular calcium level and further promotes extracellular signal-related kinase (ERK) 1/2 phosphorylation. By contrast, calcium chelator BAPTM/AM and MEK inhibitor (U0126) can reverse Rap2B-induced ERK1/2 phosphorylation. Furthermore, Rap2B knockdown inhibits cell proliferation, migration, and invasion abilities via calcium related-ERK1/2 signaling. In addition, overexpression of Rap2B promotes cell proliferation, migration and invasion abilities, which could be neutralized by BAPTM/AM and U0126. Taken together, these findings shed light on Rap2B as a therapeutic target for breast cancer

    Rap2B promotes migration and invasion of human suprarenal epithelioma

    Get PDF
    The aim of our study was to elucidate the role of Rap2B in the development of human suprarenal epithelioma and to investigate the effect of Rap2B on suprarenal epithelioma cells migration and invasion. We use tissue microarray and immunohistochemistry to evaluate Rap2B staining in 75 suprarenal epithelioma tissues and 75 tumor-adjacent normal renal tissues. And the expression of Rap2B protein in human suprarenal epithelioma cells and tissues was detected by western blot simultaneously. The role of Rap2B in suprarenal epithelioma cells migration and invasion was detected by using wound healing assay, cell migration assay, and matrigel invasion assay. After that, we performed western blot analysis and gelatin zymography to detect MMP-2 protein expression and enzyme activity. Our research showed that Rap2B expression was increased in tumor tissues compared with tumor-adjacent normal renal tissues. But no correlation was found between Rap2B expression and clinicopathological parameters. In addition, we found that Rap2B promoted the cell migration and invasion abilities, and Rap2B increased MMP-2 expression and enzyme activity in suprarenal epithelioma cells. Our data indicated that Rap2B expression is significantly increased in human suprarenal epithelioma and Rap2B can promote the cell migration and invasion abilities, which may provide a new target for the treatment of suprarenal epithelioma

    Irisin Is Controlled by Farnesoid X Receptor and Regulates Cholesterol Homeostasis

    Get PDF
    ObjectiveThe aim of this study was to investigate whether the nuclear receptor farnesoid X receptor (FXR) could regulate FNDC5/Irisin expression and the role of Irisin in hyperlipidemia and atherosclerosis in ApoE-/- mice.Methods and ResultsWe treated primary human hepatocytes, HepG2 cells, and Rhesus macaques with FXR agonist (CDCA, GW4064, and ivermectin). FNDC5 expression was highly induced by CDCA and GW4064 in hepatocytes, HepG2 cells, and the circulating level of Irisin increased in Rhesus macaques. Luciferase reporter and CHIP assays were used to determine whether FXR could regulate FNDC5 promoter activity. Irisin-ApoE-/- and ApoE-/- mice were used to study the metabolic function of Irisin in dyslipidemia and atherosclerosis. Irisin-ApoE-/- mice showed improved hyperlipidemia and alleviated atherosclerosis as compared with ApoE-/- mice. Irisin upregulated the expression of Abcg5/Abcg8 in liver and intestine, which increased the transport of biliary cholesterol and fecal cholesterol output.ConclusionActivation of FXR induces FNDC5 mRNA expression in human and increased the circulating level of Irisin in Rhesus macaques. FNDC5/Irisin is a direct transcriptional target of FXR. Irisin may be a novel therapeutic strategy for dyslipidemia and atherosclerosis

    Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    Get PDF
    BACKGROUND Human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, early embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase–polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTS We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility. (Funded by the National Basic Research Program of China and others.
    corecore