16 research outputs found

    Meta-analysis: The Effect of Muscle Strength Training on Walking Ability of Patients with Parkinson's Disease

    Get PDF
    Objective: This Meta-analysis was aimed to systematically studying the effects of muscle strength training on the walking ability like balance ability, mobility ability of Parkinson's disease patients and then provide useful theoretical reference to further researches on exercise treatments on Parkinson’s disease by retrieving and collecting articles about muscle strength training. Methods This literature review was finally determined on searching PubMed, Elsevier, Web of science, China Journal Full-text Database (CNKI), WanFang Data and other Chinese and foreign databases and combined with manual search. The limit of the search time was from the date when the literature was recorded to 2019. A comprehensive collection of randomly controlled trials of muscle strength training on the walking ability of Parkinson's patients was done. Researchers used the Cochrance risk assessment tool to evaluate the methodological quality of the selected articles, and the ReMan 5.3.5 software to statistically process the obtained data. Results A total of 13 RCTs and 627 samples were included in this study. Meta-analysis of BBS balance scale show that MD=4.67 (95%CI, I2=97%, P=0.52) between muscle strength training group and non-exercise intervention group; MD=-2.67 between muscle strength training group and exercise intervention control group (95%CI, I2=7%, P<0.00001); TUGT Meta-analysis show that MD=-1.06 (95%CI, I2=75%, P=0.10) between muscle strength training group and non-exercise intervention group; MD=0.09 (95%CI, I2=0%, P=0.31) between the muscle strength training group and the control group with exercise intervention; 10MWT Meta-analysis show MD=-0.28 (95%CI), I2=98%, P<0.29) between the muscle strength training group and the control group with exercise intervention; Stride length Meta-analysis show MD=-1.85 (95%CI, I2=68%, P=0.63) between the muscle strength training group and the control group without exercise intervention; MD=-1.75 (95%CI, I2=32%, P=0.56) between the muscle strength training group and the control group with exercise intervention; MD=-1.75 (95%CI, I2=32%, P=0.56). Meta-analysis of stride speed show MD=-0.02 (95%CI, I2=0%, P=0.46) between muscle strength training group and control group without exercise intervention; MD=-0.03 (95%CI, I2=35%, P=0.52) between the muscle strength training group and control group with exercise intervention. Conclusion Muscle strength training can significantly improve the balance ability, mobility, and walking ability of Parkinson's disease patients, but it has no significant benefits on improving stride length and walking speed

    Meta-analysis: The Effect of Muscle Strength Training on Walking Ability of Patients with Parkinson's Disease

    Get PDF
    Objective: This Meta-analysis was aimed to systematically studying the effects of muscle strength training on the walking ability like balance ability, mobility ability of Parkinson's disease patients and then provide useful theoretical reference to further researches on exercise treatments on Parkinson’s disease by retrieving and collecting articles about muscle strength training. Methods This literature review was finally determined on searching PubMed, Elsevier, Web of science, China Journal Full-text Database (CNKI), WanFang Data and other Chinese and foreign databases and combined with manual search. The limit of the search time was from the date when the literature was recorded to 2019. A comprehensive collection of randomly controlled trials of muscle strength training on the walking ability of Parkinson's patients was done. Researchers used the Cochrance risk assessment tool to evaluate the methodological quality of the selected articles, and the ReMan 5.3.5 software to statistically process the obtained data. Results A total of 13 RCTs and 627 samples were included in this study. Meta-analysis of BBS balance scale show that MD=4.67 (95%CI, I2=97%, P=0.52) between muscle strength training group and non-exercise intervention group; MD=-2.67 between muscle strength training group and exercise intervention control group (95%CI, I2=7%, P<0.00001); TUGT Meta-analysis show that MD=-1.06 (95%CI, I2=75%, P=0.10) between muscle strength training group and non-exercise intervention group; MD=0.09 (95%CI, I2=0%, P=0.31) between the muscle strength training group and the control group with exercise intervention; 10MWT Meta-analysis show MD=-0.28 (95%CI), I2=98%, P<0.29) between the muscle strength training group and the control group with exercise intervention; Stride length Meta-analysis show MD=-1.85 (95%CI, I2=68%, P=0.63) between the muscle strength training group and the control group without exercise intervention; MD=-1.75 (95%CI, I2=32%, P=0.56) between the muscle strength training group and the control group with exercise intervention; MD=-1.75 (95%CI, I2=32%, P=0.56). Meta-analysis of stride speed show MD=-0.02 (95%CI, I2=0%, P=0.46) between muscle strength training group and control group without exercise intervention; MD=-0.03 (95%CI, I2=35%, P=0.52) between the muscle strength training group and control group with exercise intervention. Conclusion Muscle strength training can significantly improve the balance ability, mobility, and walking ability of Parkinson's disease patients, but it has no significant benefits on improving stride length and walking speed

    Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands

    No full text
    Positive biodiversity–ecosystem‐functioning (BEF) relationships are commonly found in experimental and observational studies, but how they vary in different environmental contexts and under the influence of coexisting life forms is still controversial. Investigating these variations is important for making predictions regarding the dynamics of plant communities and carbon pools under global change. We conducted this study across 433 shrubland sites in northern China. We fitted structural equation models (SEMs) to analyze the variation in the species‐richness–biomass relationships of shrubs and herbs along a wetness gradient and general liner models (GLMs) to analyze how shrub or herb biomass affected the species‐richness–biomass relationship of the other life form. We found that the positive species‐richness–biomass relationships for both shrubs and herbs became weaker or even negative with higher water availability, likely indicating stronger interspecific competition within life forms under more benign conditions. After accounting for variation in environmental contexts using residual regression, we found that the benign effect of greater facilitation by a larger shrub biomass reduced the positive species‐richness–biomass relationships of herbs, causing them to become nonsignificant. Different levels of herb biomass, however, did not change the species‐richness–biomass relationship of shrubs, possibly because greater herb biomass did not alter the stress level for shrubs. We conclude that biodiversity in the studied plant communities is particularly important for plant biomass production under arid conditions and that it might be possible to use shrubs as nurse plants to facilitate understory herb establishment in ecological restoration.ISSN:0012-9658ISSN:1939-917
    corecore