16 research outputs found

    Immortalization of rat spleen and thymus T cells by human T-cell leukemia virus type I.

    Get PDF
    Co-cultivation of thymus and spleen cells of Fisher and Lewis rats with lethally irradiated MT-2 cells harboring human T-cell leukemia virus type I (HTLV-I) resulted in the establishment of lymphoid cell lines, FIRT-1, FIRS-1, LERT-1, and LERS-1, respectively. Cells of these cell lines had rat T-cell characters as demonstrated by the positive reaction to monoclonal antibodies (MAbs) to rat T cell antigens (Thy 1 and pan T). They lacked surface immunoglobulins and strongly expressed rat interleukin-2 receptor antigen (Tac) and Ia antigen. Karyotypic analysis revealed that they had the normal rat karyotype in early cultures, but showed marked aneuploidy after long cultivation. None of them expressed HTLV gag proteins (p19 and p24) or virus particles, but they contained HTLV-I proviral DNA monoclonally and weakly expressed pX gene products (p40x). They were not transplantable into syngeneic newborn rats.</p

    Localization and function in endoplasmic reticulum stress tolerance of ERdj3, a new member of Hsp40 family protein

    No full text
    Heat shock protein 40 (Hsp40) family proteins are known to bind to Hsp70 through their J-domain and regulate the function of Hsp70 by stimulating its adenosine triphosphatase activity. In the endoplasmic reticulum (ER), there are 5 Hsp40 family proteins known so far, 3 of which were recently identified. In this report, one of the novel Hsp40 cochaperones, ERdj3, was characterized in terms of its subcellular localization, stress response, and stress tolerance of cells. By using ERdj3-specific polyclonal antibody, endogenous ERdj3 protein was shown to reside in the ER as gene transfer–mediated exogenous ERdj3. Analysis of the expression level of endogenous ERdj3 protein revealed its moderate induction in response to various ER stressors, indicating its possible action as a stress protein in the ER. Subsequently, we analyzed whether this molecule was involved in ER stress tolerance of cells, as was the case with the ER-resident Hsp70 family protein BiP. Although overexpression of ERdj3 by gene transfection could not strengthen ER stress tolerance of neuroblastoma cells, reduction of ERdj3 expression by small interfering ribonucleic acid decreased the tolerance of cells, indicating that ERdj3 might have just a marginal role in the ER stress resistance of neuroblastoma cells. In contrast, overexpression of ERdj3 notably suppressed vero toxin–induced cell death. These data suggest that ERdj3 might have diverse roles in the ER, including that of the molecular cochaperone of BiP and an as yet unknown protective action against vero toxin
    corecore