275 research outputs found

    Atomistic study on the pressure dependence of the melting point of NdFe12

    Get PDF
    We investigated, using molecular dynamics, how pressure affects the melting point of the recently theorised and epitaxially grown structure NdFe12. We modified Morse potentials using experimental constants and a genetic algorithm code, before running two-phase solid-liquid coexistence simulations of NdFe12 at various temperatures and pressures. The refitting of the Morse potentials allowed us to significantly improve the accuracy in predicting the melting temperature of the constituent elements

    Sutimlimab suppresses SARS-CoV-2 mRNA vaccine-induced hemolytic crisis in a patient with cold agglutinin disease

    Get PDF
    Cold agglutinin disease (CAD) is a rare form of acquired autoimmune hemolytic anemia driven mainly by antibodies that activate the classical complement pathway. Several patients with CAD experience its development or exacerbation of hemolysis after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or after receiving the SARS-CoV-2 mRNA vaccine. Therefore, these patients cannot receive an additional SARS-CoV-2 mRNA vaccination and have a higher risk of severe SARS-CoV-2 infection. Sutimlimab is a monoclonal antibody that inhibits the classical complement pathway of the C1s protein and shows rapid and sustained inhibition of hemolysis in patients with CAD. However, whether sutimlimab could also inhibit hemolysis caused by SARS-CoV-2 mRNA vaccination is uncertain. Here, we present the case of a 70-year-old man with CAD who repeatedly experienced a hemolytic crisis after receiving SARS-CoV-2 mRNA vaccines. The patient eventually underwent SARS-CoV-2 mRNA vaccination safely, without hemolytic attack, under classical pathway inhibition therapy with sutimlimab. This report suggests that appropriate sutimlimab administration can suppress SARS-CoV-2 mRNA vaccination-induced CAD exacerbation, and that it could be a preventive strategy to minimize hemolytic attacks in susceptible populations

    Atomistic simulations of α - Fe /Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications

    Get PDF
    Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around 450 K. Core/shell nanocomposites provide a potential route to improve material performance by combining the highly anisotropic permanent magnet with a material with high moment and high Curie temperature. We have used an atomistic spin model to investigate the magnetic properties of Nd 2 Fe 14 B with α - F e in a core/shell nanostructure. We find that at typical motor operating temperatures, increasing α - F e content reduces the coercivity of the system while enhancing the saturation magnetization. The overall effect is that an improvement in B H max is seen with increasing α - F e up to an optimal value of 70 vol. %. This property of core/shell nanostructures would make them a suitable substitute for pure Nd 2 Fe 14 B while simultaneously lowering the raw material cost of the permanent magnet component of high-performance motors

    Grain-size dependent demagnetizing factors in permanent magnets

    Get PDF
    This is the final version of the article. Available from the American Institute of Physics via the DOI in this record.The coercive field of permanent magnets decreases with increasing grain size. The grain size dependence of coercivity is explained by a size dependent demagnetizing factor. In Dy free Nd2_2Fe14_{14}B magnets the size dependent demagnetizing factor ranges from 0.2 for a grain size of 55 nm to 1.22 for a grain size of 8300 nm. The comparison of experimental data with micromagnetic simulations suggests that the grain size dependence of the coercive field in hard magnets is due to the non-uniform magnetostatic field in polyhedral grains.This work is based on results obtained from the future pioneering program “Development of magnetic material technology for high-efficiency motors” commissioned by the New Energy and Industrial Technology Development Organization (NEDO). We acknowledge the financial support from the Austrian Science Fund (F4112-N13)

    High energy product in Battenberg structured magnets

    Get PDF
    PublishedJournal Article© 2014 AIP Publishing LLC. Multiphase nano-structured permanent magnets show a high thermal stability of remanence and a high energy product while the amount of rare-earth elements is reduced. Non-zero temperature micromagnetic simulations show that a temperature coefficient of remanence of -0.073%/K and that an energy product greater than 400 kJ/m3 can be achieved at a temperature of 450 K in a magnet containing around 40 volume percent Fe65Co35 embedded in a hard magnetic matrix

    Probability distribution of substituted Titanium in RT12 (R = Nd, Sm, T = Fe, Co) structures

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordWe investigated the atomic fill site probability distributions across supercell structures of RT12-xTi (R=Nd, Sm, T=Fe, Co). We use a combined molecular dynamics and Boltzmann distribution approach to extrapolate the probability distributions for Ti substitution from lower to higher temperatures with an equilibrium condition to assess how temperature affects the predictability of the structures fill path. It was found that the Nd and Sm based Fe systems have the highest filling probability path at lower temperatures but the cohesive energy change due to Ti substitution in Sm and Nd based crystals indicates that a more stable system could be achieved with a combination Co and Fe in the transition metal site.Engineering and Physical Sciences Research Council (EPSRC)Vienna Science and Technology FundRoyal SocietyToyota Motor Corporatio
    corecore