75 research outputs found

    Unveiling the Impact of Morphine on Tamoxifen Metabolism in Mice in vivo

    Get PDF
    Background- Tamoxifen is used to treat breast cancer and cancer recurrences. After administration, tamoxifen is converted into two more potent antitumor compounds, 4OH-tamoxifen and endoxifen by the CYP3A4/5 and 2D6 enzymes in human. These active compounds are inactivated by the same UDP-glucuronosyltransferases isoforms as those involved in the metabolism of morphine. Importantly, cancer-associated pain can be treated with morphine, and the common metabolic pathway of morphine and tamoxifen suggests potential clinically relevant interactions. Methods- Mouse liver microsomes were used to determine the impact of morphine on 4OH-tamoxifen metabolism in vitro. For in vivo experiments, female mice were first injected with tamoxifen alone and then with tamoxifen and morphine. Blood was collected, and LC-MS/MS was used to quantify tamoxifen, 4OH-tamoxifen, N-desmethyltamoxifen, endoxifen, 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Results- In vitro, we found increased Km values for the production of 4OH-tamoxifen-glucuronide in the presence of morphine, suggesting an inhibitory effect on 4OH-tamoxifen glucuronidation. Conversely, in vivo morphine treatment decreased 4OH-tamoxifen levels in the blood while dramatically increasing the formation of inactive metabolites 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Conclusions- Our findings emphasize the need for caution when extrapolating results from in vitro metabolic assays to in vivo drug metabolism interactions. Importantly, morphine strongly impacts tamoxifen metabolism in mice. It suggests that tamoxifen efficiency could be reduced when both drugs are co-administered in a clinical setting, e.g. to relieve pain in breast cancer patients. Further studies are needed to assess the potential for tamoxifen-morphine metabolic interactions in humans

    Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine

    Get PDF
    <p>Abstract</p> <p>Background-</p> <p>Mice deficient for the stable tubule only peptide (STOP) display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission.</p> <p>Results-</p> <p>In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p.) produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg) was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg) was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice.</p> <p>Conclusions-</p> <p>Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.</p

    Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABA(A) receptor-mediated synaptic inhibition.

    Get PDF
    Hypothalamospinal control of spinal pain processing by oxytocin (OT) has received a lot of attention in recent years because of its potency to reduce pain symptoms in inflammatory and neuropathic conditions. However, cellular and molecular mechanisms underlying OT spinal antinociception are still poorly understood. In this study, we used biochemical, electrophysiological, and behavioral approaches to demonstrate that OT levels are elevated in the spinal cord of rats exhibiting pain symptoms, 24 h after the induction of inflammation with an intraplantar injection of λ-carrageenan. Using a selective OT receptor antagonist, we demonstrate that this elevated OT content is responsible for a tonic analgesia exerted on both mechanical and thermal modalities. This phenomenon appeared to be mediated by an OT receptor-mediated stimulation of neurosteroidogenesis, which leads to an increase in GABA(A) receptor-mediated synaptic inhibition in lamina II spinal cord neurons. We also provide evidence that this novel mechanism of OT-mediated spinal antinociception may be controlled by extracellular signal-related protein kinases, ERK1/2, after OT receptor activation. The oxytocinergic inhibitory control of spinal pain processing is emerging as an interesting target for future therapies since it recruits several molecular mechanisms, which are likely to exert a long-lasting analgesia through nongenomic and possibly genomic effects.journal articleresearch support, non-u.s. gov't2013 Oct 16importe

    Endogenous Morphine Levels Are Increased in Sepsis: A Partial Implication of Neutrophils

    Get PDF
    BACKGROUND: Mammalian cells synthesize morphine and the respective biosynthetic pathway has been elucidated. Human neutrophils release this alkaloid into the media after exposure to morphine precursors. However, the exact role of endogenous morphine in inflammatory processes remains unclear. We postulate that morphine is released during infection and can be determined in the serum of patients with severe infection such as sepsis. METHODOLOGY: The presence and subcellular immunolocalization of endogenous morphine was investigated by ELISA, mass spectrometry analysis and laser confocal microscopy. Neutrophils were activated with Interleukin-8 (IL-8) or lipopolysaccharide (LPS). Morphine secretion was determined by a morphine-specific ELISA. mu opioid receptor expression was assessed with flow cytometry. Serum morphine concentrations of septic patients were determined with a morphine-specific ELISA and morphine identity was confirmed in human neutrophils and serum of septic patients by mass spectrometry analysis. The effects of the concentration of morphine found in serum of septic patients on LPS-induced release of IL-8 by human neutrophils were tested. PRINCIPAL FINDINGS: We confirmed the presence of morphine in human neutrophil extracts and showed its colocalisation with lactoferrin within the secondary granules of neutrophils. Morphine secretion was quantified in the supernatant of activated human polymorphonuclear neutrophils in the presence and absence of Ca(2+). LPS and IL-8 were able to induce a significant release of morphine only in presence of Ca(2+). LPS treatment increased mu opioid receptor expression on neutrophils. Low concentration of morphine (8 nM) significantly inhibited the release of IL-8 from neutrophils when coincubated with LPS. This effect was reversed by naloxone. Patients with sepsis, severe sepsis and septic shock had significant higher circulating morphine levels compared to patients with systemic inflammatory response syndrome and healthy controls. Mass spectrometry analysis showed that endogenous morphine from serum of patient with sepsis was identical to poppy-derived morphine. CONCLUSIONS: Our results indicate that morphine concentrations are increased significantly in the serum of patients with systemic infection and that morphine is, at least in part, secreted from neutrophils during sepsis. Morphine concentrations equivalent to those found in the serum of septic patients significantly inhibited LPS-induced IL-8 secretion in neutrophils

    Étude de la morphine endogène dans le système nerveux de mammifères

    No full text
    Un stress induit l apparition de morphine sanguine et cérébrale, suggérant que la morphine endogène, et ses dérivés comme la M6G, représentent des médiateurs de la réponse au stress. Durant ma thèse j ai utilisé la lignée SH-SY5Y et j ai montré la présence de morphine et de M6G dans ces cellules. La morphine est secrétée de façon calcium-dépendante suite à une stimulation nicotinique. J ai également quantifié la morphine endogène dans différentes zones du cerveau de souris. Dans le cervelet des études en microscopie e lectronique ont montré une immunoréactivité dans des cellules en corbeille et leurs terminaisons qui font des synapses sur les corps cellulaires des cellules de Purkinje. Des approches de cultures cellulaires ont confirmé la néosynthèse de morphine par des neurones, et ont montré que les astrocytes sont capables de recapter de la morphine. Nous travaux montrent que la morphine endogène cérébrale possède toutes les caractéristiques d un neurotransmetteur.Using the adrenal chromaffin cell model, we have shown the presence of morphine-6-glucuronide (M6G) in secretory granules and their secretion, leading us to propose that this endogenous alkaloid represent new neuroendocrine factor. In the human neuroblastoma SH-SY5Y cells we have characterized morphine and M6G, and demonstrate the presence of the UGT2B7 enzyme responsible for the formation of M6G from morphine. Morphine is secreted in response to nicotine stimulation via a Ca2+-dependent mechanism. We also show that morphine and M6G at concentrations as low as 10 10 M evoke specific naloxone-reversible membrane currents. Microscopy and proteomic approaches were used to quantify endogenous morphine in different brain area like the hippocampus, the cortex or the cerebellum. In the cerebellum, morphine is present in basket cells and their termini, which form close contacts on Purkinje cell bodies. Our work shows that morphine has all the characteristics of a neurotransmitter.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Pain, immunity, opiate and opioid compounds and health.

    No full text
    International audienceWe surmise that opioid peptides, i.e., methionine enkephalin, first arose during evolution as modulators of cellular immune function given their immune actions and the presence of enkelytin, a potent antibacterial peptide, and its precursor proenkephalin in animals 500 million years divergent in evolution. Pain probably emerged from this perspective because of its association with proinflammatory events. Endogenous morphine appears to exert positive effects on homeostasis by limiting the degree of excitation. Supporting this view is the fact that the mu3 opiate receptor subtype, which is opioid peptide insensitive and morphine selective, is coupled to constitutive nitric oxide release, which also has this down regulating action in neural, immune, vascular and gastrointestinal tissues. Thus, morphine down regulates immune processes in addiction, an action/function that it appears to normally perform when the situation calls for this action and by so doing in this natural setting, sustains life

    Morphine 6beta glucuronide: fortuitous morphine metabolite or preferred peripheral regulatory opiate?

    No full text
    International audienceMorphine-6beta-glucuronide (M6G), a metabolite of morphine that the brain can produce, is an opiate agonist that appears to have a greater analgesic potency than morphine. M6G has a 1-octanol/water partition coefficient 187 times lower than that of morphine and M6G has a blood brain barrier permeability 57 times lower than morphine. The brain uptake rate however is only 32 times lower, suggesting that an active transport mechanism might be present. Furthermore, evidence for a distinct receptor for M6G also appears to be emerging. Real time polymerase chain reactions allowed for the discovery of single nucleotide polymorphisms (SNP's) in the human mu opioid receptor gene. The most common SNP is a substitution at base118 where A is replaced with G (A118G). This SNP has a decreased potency for M6G in individuals possessing it whereas the potency of morphine is unaffected by this SNP. The possibility that a peripheral opiate signaling system, using M6G and its distinct receptor, exists seems plausible. Taken together, if a distinct M6G signaling mechanism does exist, the fact that morphine can be converted into a more water soluble compound that might be more potent would not be an accident

    Central metabolism as a potential origin of sex differences in morphine antinociception but not in the induction of antinociceptive tolerance in mice

    No full text
    International audienceBackground and Purpose-In rodents, morphine antinociception is influenced by sex. However, conflicting results have been reported regarding the interaction between sex and morphine antinociceptive tolerance. Morphine is metabolised in the liver and brain into morphine-3-glucuronide (M3G). Sex differences in morphine metabolism and differential metabolic adaptations during tolerance development might contribute to behavioural discrepancies. This article investigates the differences in peripheral and central morphine metabolism after acute and chronic morphine treatment in male and female mice. Experimental Approach-Sex differences in morphine antinociception and tolerance were assessed using the tail-immersion test. After acute and chronic morphine treatment, morphine and M3G metabolic kinetics in the blood were evaluated using LC-MS/MS. In addition, they were quantified in several central nervous system (CNS) regions. Finally, the blood-brain barrier (BBB) permeability of M3G was assessed in male and female mice. Key Results-This study demonstrated that female mice showed weaker morphine antinociception and faster induction of tolerance than males. Additionally, female mice showed higher levels of M3G in the blood and several pain-related CNS regions than male mice, whereas lower levels of morphine were observed in these regions. M3G brain/blood ratios after injection of M3G indicated no sex differences in M3G BBB permeability, and these ratios were lower than those obtained after injection of morphine. Conclusion-These differences are attributable mainly to morphine central metabolism, which differed between males and females in pain-related CNS regions, consistent with weaker morphine antinociceptive effects in females. However, the role of morphine metabolism in antinociceptive tolerance seemed limited

    Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives

    No full text
    International audienceMorphine derived from Papaver somniferum is commonly used as an analgesic compound for pain relief. It is now accepted that endogenous morphine, structurally identical to vegetal morphine-alkaloid, is synthesized by mammalian cells from dopamine. Morphine binds mu opioid receptor and induces antinociceptive effects. However, the exact role of these compounds is a matter of debate although different links with infection, sepsis, inflammation, as well as major neurological pathologies (Parkinson's disease, schizophrenia) have been proposed. The present review describes endogenous morphine and morphine derivative discovery, synthesis, localization and potential implications in physiological and pathological processes
    corecore