425 research outputs found

    GW25-e1599 Transcatheter occlusion of huge coronary artery fistula

    Get PDF

    Deltas in arid environments

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Day, J., Goodman, R., Chen, Z., Hunter, R., Giosan, L., & Wang, Y. Deltas in arid environments. Water, 13(12), (2021): 1677, https://doi.org/10.3390/w13121677.Due to increasing water use, diversion and salinization, along with subsidence and sea-level rise, deltas in arid regions are shrinking worldwide. Some of the most ecologically important arid deltas include the Colorado, Indus, Nile, and Tigris-Euphrates. The primary stressors vary globally, but these deltas are threatened by increased salinization, water storage and diversion, eutrophication, and wetland loss. In order to make these deltas sustainable over time, some water flow, including seasonal flooding, needs to be re-established. Positive impacts have been seen in the Colorado River delta after flows to the delta were increased. In addition to increasing freshwater flow, collaboration among stakeholders and active management are necessary. For the Nile River, cooperation among different nations in the Nile drainage basin is important. River flow into the Tigris-Euphrates River delta has been affected by politics and civil strife in the Middle East, but some flow has been re-allocated to the delta. Studies commissioned for the Indus River delta recommended re-establishment of some monthly water flow to maintain the river channel and to fight saltwater intrusion. However, accelerating climate impacts, socio-political conflicts, and growing populations suggest a dire future for arid deltas.This research received no external funding

    The radiation protection role of heparin-SOD conjugate in irradiated mice

    Get PDF
    Heparin-SOD conjugate (Hep-SOD) was prepared by modifying Cu,Zn-SOD with heparin. An acute radiation-induced mouse injury model was constructed to study the radiation protection effects of Hep-SOD conjugate. Fifty-six mice were randomly divided into seven groups: (I) normal control group; (II) irradiated control group; (III) positive control group (amifostine group, 300 mg/kg); (IV) SOD group (35000 U/kg); (V) high dosage of Hep-SOD group (70000 U/kg); (VI) medium dosage of Hep-SOD group (35000 U/kg); (VII) low dosage of Hep-SOD group (17500 U/kg). Drugs were intraperitoneally injected into each mouse 1 h before radiation except for the normal control group. All the irradiated groups were irradiated with 6 Gy. Organ indices, haematopoietic function indices, peripheral blood cells, liver function test, oxidative stress state and pathological observation were detected to study the effects of Hep-SOD on irradiated mice. Results showed that bone marrow suppression of irradiated mice could be reduced when treated by Hep-SOD before radiation. Oxidative stress detection and pathological observation of the liver and intestine showed that the damage caused by radiation was relieved when mice were treated with Hep-SOD before radiation. This study shows a new direction to prevent organisms from the damage caused by radiation

    VENUS: A Geometrical Representation for Quantum State Visualization

    Full text link
    Visualizations have played a crucial role in helping quantum computing users explore quantum states in various quantum computing applications. Among them, Bloch Sphere is the widely-used visualization for showing quantum states, which leverages angles to represent quantum amplitudes. However, it cannot support the visualization of quantum entanglement and superposition, the two essential properties of quantum computing. To address this issue, we propose VENUS, a novel visualization for quantum state representation. By explicitly correlating 2D geometric shapes based on the math foundation of quantum computing characteristics, VENUS effectively represents quantum amplitudes of both the single qubit and two qubits for quantum entanglement. Also, we use multiple coordinated semicircles to naturally encode probability distribution, making the quantum superposition intuitive to analyze. We conducted two well-designed case studies and an in-depth expert interview to evaluate the usefulness and effectiveness of VENUS. The result shows that VENUS can effectively facilitate the exploration of quantum states for the single qubit and two qubits
    corecore