127 research outputs found

    Microbial community analysis in biocathode microbial fuel cells packed with different materials

    Get PDF
    Biocathode MFCs using microorganisms as catalysts have important advantages in lowering cost and improving sustainability. Electrode materials and microbial synergy determines biocathode MFCs performance. In this study, four materials, granular activated carbon (GAC), granular semicoke (GS), granular graphite (GG) and carbon felt cube (CFC) were used as packed cathodic materials. The microbial composition on each material and its correlation with the electricity generation performance of MFCs were investigated. Results showed that different biocathode materials had an important effect on the type of microbial species in biocathode MFCs. The microbes belonging to Bacteroidetes and Proteobacteria were the dominant phyla in the four materials packed biocathode MFCs. Comamonas of Betaproteobacteria might play significant roles in electron transfer process of GAC, GS and CFC packed biocathode MFCs, while in GG packed MFC Acidovorax may be correlated with power generation. The biocathode materials also had influence on the microbial diversity and evenness, but the differences in them were not positively related to the power production

    3D Model-free Visual Localization System from Essential Matrix under Local Planar Motion

    Full text link
    Visual localization plays a critical role in the functionality of low-cost autonomous mobile robots. Current state-of-the-art approaches for achieving accurate visual localization are 3D scene-specific, requiring additional computational and storage resources to construct a 3D scene model when facing a new environment. An alternative approach of directly using a database of 2D images for visual localization offers more flexibility. However, such methods currently suffer from limited localization accuracy. In this paper, we propose an accurate and robust multiple checking-based 3D model-free visual localization system to address the aforementioned issues. To ensure high accuracy, our focus is on estimating the pose of a query image relative to the retrieved database images using 2D-2D feature matches. Theoretically, by incorporating the local planar motion constraint into both the estimation of the essential matrix and the triangulation stages, we reduce the minimum required feature matches for absolute pose estimation, thereby enhancing the robustness of outlier rejection. Additionally, we introduce a multiple-checking mechanism to ensure the correctness of the solution throughout the solving process. For validation, qualitative and quantitative experiments are performed on both simulation and two real-world datasets and the experimental results demonstrate a significant enhancement in both accuracy and robustness afforded by the proposed 3D model-free visual localization system

    Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis

    Get PDF
    Ischaemic stroke is becoming the most common cerebral disease in aging populations, but the underlying molecular mechanism of the disease has not yet been fully elucidated. Increasing evidence has indicated that an excess of iron contributes to brain damage in cerebral ischaemia/reperfusion (I/R) injury. Although mitochondrial ferritin (FtMt) plays a critical role in iron homeostasis, the molecular function of FtMt in I/R remains unknown. We herein report that FtMt levels are upregulated in the ischaemic brains of mice. Mice lacking FtMt experience more severe brain damage and neurological deficits, accompanied by typical molecular features of ferroptosis, including increased lipid peroxidation and disturbed glutathione (GSH) after cerebral I/R. Conversely, FtMt overexpression reverses these changes. Further investigation shows that Ftmt ablation promotes I/R-induced inflammation and hepcidin-mediated decreases in ferroportin1, thus markedly increasing total and chelatable iron. The elevated iron consequently facilitates ferroptosis in the brain of I/R. In brief, our results provide evidence that FtMt plays a critical role in protecting against cerebral I/R-induced ferroptosis and subsequent brain damage, thus providing a new potential target for the treatment/prevention of ischaemic stroke

    Twist1 enhances hypoxia induced radioresistance in cervical cancer cells by promoting nuclear EGFR localization

    No full text
    Twist1 is a crucial transcription factor that regulates epithelial mesenchymal transition and involves in metastasis. Recent evidence suggests that Twist1 plays important role in hypoxia-induced radioresistance, but the underlying mechanism remains elusive. Here we investigated the change of Twist1 expression in human cervical squamous cancer cell line SiHa after hypoxia treatment. We also explored the role of Twist1 in radioresistance by manipulating the expression level of Twist1.We observed that hypoxia treatment elevated the expression of Twist1 in SiHa cells. Knockdown of Twist1 with siRNA increased the radiosensitivity of SiHa cells under hypoxia condition, accompanied by reduced levels of nuclear Epidermal Growth Factor Receptor (EGFR) and DNA-dependent protein kinase (DNA-PK). Conversely, overexpression of Twist1 led to increased radioresistance of SiHa cells, which in turn increased nuclear EGFR localisation and expression levels of nuclear DNA-PK. Moreover, concomitant high expression of hypoxia-inducible factor-1? (HIF-1?) and Twist1 in primary tumors of cervical cancer patients correlated with the worse prognosis after irradiation treatment. Taken together, these data provide new insights into molecular mechanism underlying hypoxia-induced radio resistance in cervical cancer cells, and suggest that Twist1 is a promising molecular target to improve the efficacy of cancer radiotherapy

    Evapotranspiration and its partitioning during and following a mountain pine beetle infestation of a lodgepole pine stand in the interior of British Columbia, Canada

    Get PDF
    IntroductionMassive tree mortality events in western Canada due to widespread infestation by mountain pine beetle (MPB) are expected to impact local-to-regional evapotranspiration (ET) dynamics during and after a disturbance. How ecosystem-level ET and its components may vary with canopy-tree mortality (treefall) and subsequent understory recovery remains unclear.MethodsWe used 10 years of continuous eddy-covariance and remote-sensing data (2007–2016) and machine-learning models based on random forest and xgboost to determine forest- and climate-driven effects at temporal scales appropriate for a lodgepole pine-dominated stand following a major, five-year MPB disturbance initiated in the summer of 2006.ResultsTotal annual ET over the 10 years ranged from 207.2 to 384.6 mm, with annual plant transpiration (T) contributing to 57 ± 5.4% (mean ± standard deviation) of annual ET. Annual ET initially declined (2007–2011) and then increased (2011–2016), with ET and T/ET increasing at statistically non-significant rates of approximately 3.2 and 1.2% per year from 2007 to 2016. Air temperature (Ta) and vapor pressure deficit (VPD) were the most important predictors of seasonal variation in ET and T/ET during the 10-year period, with high Ta, VPD, and photosynthetically active radiation (PAR) causing ET and T/ET to increase. Annual ET increased with both increasing spring Ta and decreasing VPD. Annual T/ET was shown to increase with increasing VPD and decrease with increasing volumetric soil water content at a 5-cm depth (VWC5). Enhanced vegetation index (EVI, an indicator of canopy greenness) lagged T and overstory tree mortality, whereas previous- and current-year values of EVI were shown to be poor predictors of annual ET and T/ET.Discussion and conclusionsThese findings suggest that the promotion of climate factors on forest ecosystem-level water vapor fluxes may offset reductions promoted by MPB outbreaks. Climate processes affected water vapor fluxes more than biotic factors, like stand greenness, highlighting the need to include climate-regulatory mechanisms in predictive models of ET dynamics during and subsequent to stand disturbance. Climate and forest-greenness effects on water vapor fluxes need to be explored at even longer time scales, e.g., at decadal scales, to capture long-drawn-out trends associated with stand disturbance and its subsequent recovery

    PRIMA-1Met suppresses colorectal cancer independent of p53 by targeting MEK

    Get PDF
    This work was supported by Grant No. 81201779 (Hua Xiong) from the National Natural Science Youth Foundation; Grant No. 81502118 (Yanmei Zou) from the National Natural Science Youth Foundation; Grant No. 2014CFB250 (Yanmei Zou) from the Natural Science Foundation of Hubei Province; Grant No. 81372434 (Huihua Xiong) from the National Natural Science Foundation.PRIMA-1Met is the methylated PRIMA-1 (p53 reactivation and induction of massive apoptosis) and could restore tumor suppressor function of mutant p53 and induce p53 dependent apoptosis in cancer cells harboring mutant p53. However, p53 independent activity of PRIMA-1Met remains elusive. Here we reported that PRIMA-1Met attenuated colorectal cancer cell growth irrespective of p53 status. Kinase profiling revealed that mitogen-activated or extracellular signal-related protein kinase (MEK) might be a potential target of PRIMA-1Met. Pull-down binding and ATP competitive assay showed that PRIMA-1Met directly bound MEK in vitro and in cells. Furthermore, the direct binding sites of PRIMA-1Met were explored by using a computational docking model. Treatment of colorectal cancer cells with PRIMA-1Met inhibited p53-independent phosphorylation of MEK, which in turn impaired anchorage-independent cell growth in vitro. Moreover, PRIMA-1Met suppressed colorectal cancer growth in xenograft mouse model by inhibiting MEK1 activity. Taken together, our findings demonstrate a novel p53-independent activity of PRIMA-1Met to inhibit MEK and suppress colorectal cancer growth.Publisher PDFPeer reviewe

    Toxicity evaluation of processing Evodiae fructus based on intestinal microbiota

    Get PDF
    BackgroundWith the development of healthcare services, drug efficacy, and safety have become the focus of drug use, and processing alters drug toxicity and efficacy, exploring the effects of processing on Evodiae fructus (EF) can guide the clinical use of drugs.MethodsFifty male Kunming mice were randomly divided into the control group (CCN), raw small-flowered EF group (CRSEF), raw medium-flowered EF group (CRMEF), processing small-flowered EF group (CPSEF), and processing medium-flowered EF group (CPMEF). The CRSEF, CRMEF, CPSEF, and CPMEF groups were gavaged with aqueous extracts of raw small-flowered EF dry paste (RSEF), medium-flowered EF dry paste (RMEF), processing small-flowered EF dry paste (PSEF) and processing medium-flowered EF dry paste (PMEF), respectively, for 21 days at 5 times the pharmacopeial dosage. Upon concluding the experiment, histopathological sections of liver and kidney tissues were examined. Additionally, levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum creatinine (SCr), and blood urea nitrogen (BUN) were determined. DNA from the intestinal contents of the mice was extracted, and 16S rRNA full-length high-throughput sequencing was performed.ResultsAfter fed EF 21 days, mice exhibited a decreasing trend in body weight. Comparative analysis with the CCN group revealed an upward trend in SCr, BUN, AST, and ALT levels in both CRSEF and CRMEF groups. The CRMEF group displayed notably elevated BUN and AST levels, with an observed increasing trend in Scr and ALT. Kidney sections unveiled cellular edema and considerable inflammatory cell infiltrates, whereas significant liver damage was not evident. Compared with CRSEF, Bun levels were significantly lower while AST levels were significantly higher in the CPMEF group. Additionally, the intestinal microbiota diversity and the relative abundance of Psychrobacter decreased significantly, and the relative abundance of Staphylococcus, Jeotgalicoccus, and Salinicoccus increased significantly in the CPMEF group. AST, ALT, and SCr were positively correlated with Staphylococcus, Jeotgalicoccus, and Salinicoccus.ConclusionIn conclusion, PMEF significantly increased harmful bacteria (Staphylococcus, Jeotgalicoccus, and Salinicoccu) and decreased beneficial bacteria. SEF with 5 times the clinical dose showed nephrotoxicity and SEF nephrotoxicity decreased after processing, but EF hepatotoxicity was not significant, which may be due to insufficient dose concentration and time

    Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production

    Get PDF
    As and Cd in soil can be assimilated and accumulated by vegetables and can be subsequently ingested by humans. Contradictory effects of organic fertilizer application on As and Cd accumulation in soil have been reported in previous studies. An eight-year greenhouse study was conducted on a sandy loam soil in Beijing, China to investigate the effects of organic fertilizer application rate on soil properties, and As and Cd accumulation in soil. The contamination risk of pak choi grown after eight years’ application of organic fertilizer was also evaluated. Soil organic carbon increased 3.0–3.8 times with low, medium and high rates of fertilizer application in 2018 compared to the initial soil. Organic fertilizer application significantly increased soil nutrients and microbial biomass while it mildly affected soil pH. The bioavailability of As/Cd has decreased after eight years’ application of organic fertilizer. Pak choi crop harvested from all three treatments in 2018 did not pose a threat to human health, even for life-time consumption. Soil total As content significantly decreased with organic fertilizer application, mainly due to the lower As content in the applied fertilizer than that in soil. Continuous application of clean organic fertilizer can be adopted to reduce the contamination risk of highly contaminated soil in the soil–plant system
    • …
    corecore