131 research outputs found
HPV prevalence and concordance in the cervix and oral cavity of pregnant women.
OBJECTIVES: This investigation examined human papillomavirus (HPV) in pregnant women in order to characterize viral prevalence, types and concordance between infection in the cervix and in the oral cavity. METHODS: A total of 577 pregnant women seeking routine obstetric care were evaluated for HPV infection in their cervix during gestation and immediately before delivery, and in the oral cavity during gestation. Male partners present during the gestational clinic visit also provided a specimen from their oral cavity. HPV assessment was performed by PCR, dot blot hybridization and DNA sequencing. A sexual and health questionnaire was completed by the pregnant women. RESULTS: HPV prevalence in women was 29% in the cervix and 2.4% in the oral cavity. Among those with both gestational and delivery specimens, 35% were infected at least once and 20% had infection at both intervals. At delivery, 68% of infected women had an oncogenic HPV type in the cervix. There was no type-specific HPV concordance between the two cervical specimens, nor cervical and oral results in women, nor with cervical and oral findings between partners. CONCLUSION: The lack of association in HPV positivity and types between the cervix and oral cavity in these women suggests that self-inoculation is uncommon. This source of infection does not appear to be from oral contact with a current male partner, since there also was no concordance between partners. These results suggest either other modes of HPV transmission or differences in susceptibility to HPV infection or its clearance in the oral cavity and genital mucosa
Infants later diagnosed with autism have lower canonical babbling ratios in the first year of life
BACKGROUND: Canonical babbling-producing syllables with a mature consonant, full vowel, and smooth transition-is an important developmental milestone that typically occurs in the first year of life. Some studies indicate delayed or reduced canonical babbling in infants at high familial likelihood for autism spectrum disorder (ASD) or who later receive an ASD diagnosis, but evidence is mixed. More refined characterization of babbling in the first year of life in infants with high likelihood for ASD is needed.
METHODS: Vocalizations produced at 6 and 12 months by infants (n = 267) taking part in a longitudinal study were coded for canonical and non-canonical syllables. Infants were categorized as low familial likelihood (LL), high familial likelihood diagnosed with ASD at 24 months (HL-ASD) or not diagnosed (HL-Neg). Language delay was assessed based on 24-month expressive and receptive language scores. Canonical babble ratio (CBR) was calculated by dividing the number of canonical syllables by the number of total syllables. Generalized linear (mixed) models were used to assess the relationship between group membership and CBR, controlling for site, sex, and maternal education. Logistic regression was used to assess whether canonical babbling ratios at 6 and 12 months predict 24-month diagnostic outcome.
RESULTS: No diagnostic group differences in CBR were detected at 6 months, but HL-ASD infants produced significantly lower CBR than both the HL-Neg and LL groups at 12 months. HL-Neg infants with language delay also showed reduced CBR at 12 months. Neither 6- nor 12-month CBR was significant predictors of 24-month diagnostic outcome (ASD versus no ASD) in logistic regression.
LIMITATIONS: Small numbers of vocalizations produced by infants at 6 months may limit the reliability of CBR estimates. It is not known if results generalize to infants who are not at high familial likelihood, or infants from more diverse racial and socioeconomic backgrounds.
CONCLUSIONS: Lower canonical babbling ratios are apparent by the end of the first year of life in ASD regardless of later language delay, but are also observed for infants with later language delay without ASD. Canonical babbling may lack specificity as an early marker when used on its own
Vocal development in a large‐scale crosslinguistic corpus
This study evaluates whether early vocalizations develop in similar ways in children across diverse cultural contexts. We analyze data from daylong audio recordings of 49 children (1–36 months) from five different language/cultural backgrounds. Citizen scientists annotated these recordings to determine if child vocalizations contained canonical transitions or not (e.g., “ba” vs. “ee”). Results revealed that the proportion of clips reported to contain canonical transitions increased with age. Furthermore, this proportion exceeded 0.15 by around 7 months, replicating and extending previous findings on canonical vocalization development but using data from the natural environments of a culturally and linguistically diverse sample. This work explores how crowdsourcing can be used to annotate corpora, helping establish developmental milestones relevant to multiple languages and cultures. Lower inter‐annotator reliability on the crowdsourcing platform, relative to more traditional in‐lab expert annotators, means that a larger number of unique annotators and/or annotations are required, and that crowdsourcing may not be a suitable method for more fine‐grained annotation decisions. Audio clips used for this project are compiled into a large‐scale infant vocalization corpus that is available for other researchers to use in future work
Ripple modulated electronic structure of a 3D topological insulator
3D topological insulators, similar to the Dirac material graphene, host
linearly dispersing states with unique properties and a strong potential for
applications. A key, missing element in realizing some of the more exotic
states in topological insulators is the ability to manipulate local electronic
properties. Analogy with graphene suggests a possible avenue via a topographic
route by the formation of superlattice structures such as a moir\'e patterns or
ripples, which can induce controlled potential variations. However, while the
charge and lattice degrees of freedom are intimately coupled in graphene, it is
not clear a priori how a physical buckling or ripples might influence the
electronic structure of topological insulators. Here we use Fourier transform
scanning tunneling spectroscopy to determine the effects of a one-dimensional
periodic buckling on the electronic properties of Bi2Te3. By tracking the
spatial variations of the scattering vector of the interference patterns as
well as features associated with bulk density of states, we show that the
buckling creates a periodic potential modulation, which in turn modulates the
surface and the bulk states. The strong correlation between the topographic
ripples and electronic structure indicates that while doping alone is
insufficient to create predetermined potential landscapes, creating ripples
provides a path to controlling the potential seen by the Dirac electrons on a
local scale. Such rippled features may be engineered by strain in thin films
and may find use in future applications of topological insulators.Comment: Nature Communications (accepted
Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride
The Schr\"odinger equation dictates that the propagation of nearly free
electrons through a weak periodic potential results in the opening of band gaps
near points of the reciprocal lattice known as Brillouin zone boundaries.
However, in the case of massless Dirac fermions, it has been predicted that the
chirality of the charge carriers prevents the opening of a band gap and instead
new Dirac points appear in the electronic structure of the material. Graphene
on hexagonal boron nitride (hBN) exhibits a rotation dependent Moir\'e pattern.
In this letter, we show experimentally and theoretically that this Moir\'e
pattern acts as a weak periodic potential and thereby leads to the emergence of
a new set of Dirac points at an energy determined by its wavelength. The new
massless Dirac fermions generated at these superlattice Dirac points are
characterized by a significantly reduced Fermi velocity. The local density of
states near these Dirac cones exhibits hexagonal modulations indicating an
anisotropic Fermi velocity.Comment: 16 pages, 6 figure
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle
Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a
pair of isolated flat electronic bands and forms a strongly correlated
electronic platform. Here, we use scanning tunneling microscopy to probe local
properties of highly tunable twisted bilayer graphene devices and show that the
flat bands strongly deform when aligned with the Fermi level. At half filling
of the bands, we observe the development of gaps originating from correlated
insulating states. Near charge neutrality, we find a previously unidentified
correlated regime featuring a substantially enhanced flat band splitting that
we describe within a microscopic model predicting a strong tendency towards
nematic ordering. Our results provide insights into symmetry breaking
correlation effects and highlight the importance of electronic interactions for
all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page
Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer
Here we study the evolution of local electronic properties of a twisted
graphene bilayer induced by a strain and a high curvature. The strain and
curvature strongly affect the local band structures of the twisted graphene
bilayer; the energy difference of the two low-energy van Hove singularities
decreases with increasing the lattice deformations and the states condensed
into well-defined pseudo-Landau levels, which mimic the quantization of massive
Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle.
The joint effect of strain and out-of-plane distortion in the graphene wrinkle
also results in a valley polarization with a significant gap, i.e., the
eight-fold degenerate Landau level at the charge neutrality point is splitted
into two four-fold degenerate quartets polarized on each layer. These results
suggest that strained graphene bilayer could be an ideal platform to realize
the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure
Electron quantum metamaterials in van der Waals heterostructures
In recent decades, scientists have developed the means to engineer synthetic
periodic arrays with feature sizes below the wavelength of light. When such
features are appropriately structured, electromagnetic radiation can be
manipulated in unusual ways, resulting in optical metamaterials whose function
is directly controlled through nanoscale structure. Nature, too, has adopted
such techniques -- for example in the unique coloring of butterfly wings -- to
manipulate photons as they propagate through nanoscale periodic assemblies. In
this Perspective, we highlight the intriguing potential of designer
sub-electron wavelength (as well as wavelength-scale) structuring of electronic
matter, which affords a new range of synthetic quantum metamaterials with
unconventional responses. Driven by experimental developments in stacking
atomically layered heterostructures -- e.g., mechanical pick-up/transfer
assembly -- atomic scale registrations and structures can be readily tuned over
distances smaller than characteristic electronic length-scales (such as
electron wavelength, screening length, and electron mean free path). Yet
electronic metamaterials promise far richer categories of behavior than those
found in conventional optical metamaterial technologies. This is because unlike
photons that scarcely interact with each other, electrons in subwavelength
structured metamaterials are charged, and strongly interact. As a result, an
enormous variety of emergent phenomena can be expected, and radically new
classes of interacting quantum metamaterials designed
Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
By stacking various two-dimensional (2D) atomic crystals [1] on top of each
other, it is possible to create multilayer heterostructures and devices with
designed electronic properties [2-5]. However, various adsorbates become
trapped between layers during their assembly, and this not only affects the
resulting quality but also prevents the formation of a true artificial layered
crystal upheld by van der Waals interaction, creating instead a laminate glued
together by contamination. Transmission electron microscopy (TEM) has shown
that graphene and boron nitride monolayers, the two best characterized 2D
crystals, are densely covered with hydrocarbons (even after thermal annealing
in high vacuum) and exhibit only small clean patches suitable for atomic
resolution imaging [6-10]. This observation seems detrimental for any realistic
prospect of creating van der Waals materials and heterostructures with
atomically sharp interfaces. Here we employ cross sectional TEM to take a side
view of several graphene-boron nitride heterostructures. We find that the
trapped hydrocarbons segregate into isolated pockets, leaving the interfaces
atomically clean. Moreover, we observe a clear correlation between interface
roughness and the electronic quality of encapsulated graphene. This work proves
the concept of heterostructures assembled with atomic layer precision and
provides their first TEM images
- …