91 research outputs found

    Asteroseismology of KIC 8263801:Is it a member of NGC 6866 and a red clump star?

    Get PDF
    We present an asteroseismic analysis of the Kepler light curve of KIC 8263801, a red-giant star in the open cluster NGC 6866 that has previously been reported to be a helium-burning red-clump star. We extracted the frequencies of the radial and quadrupole modes from its frequency power spectrum and determined its properties using a grid of evolutionary models constructed with MESA. The oscillation frequencies were calculated using the GYRE code and the surface term was corrected using the Ball & Gizon(2014) prescription. We find that the star has a mass of M/M⊙=1.793±0.072M/M_{\odot} = 1.793\pm 0.072, age t=1.48±0.21t=1.48\pm 0.21 Gyr and radius R/R⊙=10.53±0.28R/R_{\odot} = 10.53\pm 0.28. By analyzing the internal structure of the best-fitting model, we infer the evolutionary status of the star KIC 8263801 as being on the ascending part of the red giant branch, and not on the red clump. This result is verified using a purely asteroseismic diagnostic, the ϵc−Δνc\epsilon_{c}-\Delta\nu_{c} diagram which can distinguish red giant branch stars from red clump stars. Finally, by comparing its age with NGC 6866 (t=0.65±0.1t=0.65 \pm 0.1 Gyr) we conclude that KIC 8263801 is not a member of this open cluster

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Robust Reconstruction of Electrocardiogram Using Photoplethysmography: A Subject-Based Model

    No full text
    Electrocardiography and photoplethysmography are non-invasive techniques that measure signals from the cardiovascular system. While the cycles of the two measurements are highly correlated, the correlation between the waveforms has rarely been studied. Measuring the photoplethysmogram (PPG) is much easier and more convenient than the electrocardiogram (ECG). Recent research has shown that PPG can be used to reconstruct the ECG, indicating that practitioners can gain a deep understanding of the patients' cardiovascular health using two physiological signals (PPG and ECG) while measuring only PPG. This study proposes a subject-based deep learning model that reconstructs an ECG using a PPG and is based on the bidirectional long short-term memory model. Because the ECG waveform may vary from subject to subject, this model is subject-specific. The model was tested using 100 records from the MIMIC III database. Of these records, 50 had a circulatory disease. The results show that a long ECG signal could be effectively reconstructed from PPG, which is, to our knowledge, the first attempt in this field. A length of 228 s of ECG was constructed by the model, which was trained and validated using 60 s of PPG and ECG signals. To segment the data, a different approach that segments the data into short time segments of equal length (and that do not rely on beats and beat detection) was investigated. Segmenting the PPG and ECG time series data into equal segments of 1-min width gave the optimal results. This resulted in a high Pearson's correlation coefficient between the reconstructed 228 s of ECG and referenced ECG of 0.818, while the root mean square error was only 0.083 mV, and the dynamic time warping distance was 2.12 mV per second on average.ISSN:1664-042

    Solid-State NMR Shows That Dynamically Different Domains of Membrane Proteins Have Different Hydration Dependence

    No full text
    Hydration has a profound influence on the structure, dynamics, and functions of membrane and membrane-embedded proteins. So far the hydration response of molecular dynamics of membrane proteins in lipid bilayers is poorly understood. Here, we reveal different hydration dependence of the dynamics in dynamically different domains of membrane proteins by multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy using 121-residue integral diacylglycerol kinase (DAGK) in 1,2-dimyristoyl-<i>sn</i>-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-<i>sn</i>-glycero-3-phospho-(1′-<i>rac</i>-glycerol) (DMPG) lipid bilayers as a model system. The highly mobile and immobile domains of DAGK and their water accessibilities are identified site-specifically by scalar- and dipolar-coupling based MAS ssNMR experiments, respectively. Our experiments reveal different hydration dependence of the dynamics in highly mobile and immobile domains of membrane proteins. We demonstrate that the fast, large-amplitude motions in highly mobile domains are not triggered until 20% hydration, enhanced at 20–50% hydration and unchanged at above 50% hydration. In contrast, motions on submicrosecond time scale of immobile residues are observed to be independent of the hydration levels in gel phase of lipids, and at the temperature near gel–liquid crystalline phase transition, amplitude of whole-molecule rotations around the bilayer normal is dominated by the fluidity of lipid bilayers, which is strongly hydration dependent. The hydration dependence of the dynamics of DAGK revealed by this study provides new insights into the correlations of hydration to dynamics and function of membrane proteins in lipid bilayers

    Nanocoiled Assembly of Asymmetric Perylene Diimides: Formulation of Structural Factors

    No full text
    Nanocoiled assemblies of organic π-conjugated molecules have attracted intense attention because of their various practical applications. Herein, the assembly of highly fluorescent monolayer and bilayer nanocoils from asymmetric perylene diimide (PDI) molecules is reported. Through systematic investigation of 21 asymmetric PDI derivatives, some critical molecular structural parameters for the formation of nanocoils, involving the position of methoxy substituents at the phenyl moiety on one side and the appropriate linker that attaches the phenyl moiety to the PDI core, are formulated. The J-aggregate nature of the helical π-stacking geometry within the nanocoil is demonstrated by optical characterization. All of the nanocoils are highly emissive, with a fluorescence quantum yield greater than 25%. Furthermore, all of the nanocoils exhibited a NIR emission with a band maximum greater than 710 nm. This new class of highly NIR fluorescent nanostructures offers promising applications in areas such as optoelectronics, fluorescent sensors, and biological imaging
    • …
    corecore