83 research outputs found

    Parameter-Efficient Tuning Makes a Good Classification Head

    Full text link
    In recent years, pretrained models revolutionized the paradigm of natural language understanding (NLU), where we append a randomly initialized classification head after the pretrained backbone, e.g. BERT, and finetune the whole model. As the pretrained backbone makes a major contribution to the improvement, we naturally expect a good pretrained classification head can also benefit the training. However, the final-layer output of the backbone, i.e. the input of the classification head, will change greatly during finetuning, making the usual head-only pretraining (LP-FT) ineffective. In this paper, we find that parameter-efficient tuning makes a good classification head, with which we can simply replace the randomly initialized heads for a stable performance gain. Our experiments demonstrate that the classification head jointly pretrained with parameter-efficient tuning consistently improves the performance on 9 tasks in GLUE and SuperGLUE.Comment: Accepted as a long paper to EMNLP 2022 Main Conferenc

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Hexamethyldisiloxane Removal from Biogas Using a Fe<sub>3</sub>O<sub>4</sub>–Urea-Modified Three-Dimensional Graphene Aerogel

    No full text
    Volatile methyl siloxanes (VMS), which are considered to be the most troublesome impurities in current biogas-cleaning technologies, need to be removed. In this study, we fabricated a series of Fe3O4–urea-modified reduced graphene-oxide aerogels (Fe3O4–urea–rGOAs) by using industrial-grade graphene oxide as the raw material. A fixed-bed dynamic adsorption setup was built, and the adsorption properties of the Fe3O4–urea–rGOAs for hexamethyldisiloxane (L2, as a VMS model pollutant) were studied. The properties of the as-prepared samples were investigated by employing various characterization techniques (SEM, TEM, FTIR, XRD, Raman spectroscopy, and N2 adsorption/desorption techniques). The results showed that the Fe3O4–urea–rGOA–0.4 had a high specific surface area (188 m2 g−1), large porous texture (0.77 cm3 g−1), and the theoretical maximum adsorption capacity for L2 (146.5 mg g−1). The adsorption capacity considerably increased with a decrease in the bed temperature of the adsorbents, as well as with an increase in the inlet concentration of L2. More importantly, the spent Fe3O4–urea–rGOA adsorbent could be readily regenerated and showed an excellent adsorption performance. Thus, the proposed Fe3O4–urea–rGOAs are promising adsorbents for removing the VMS in biogas

    Removal of Hexamethyldisiloxane via a Novel Hydrophobic (3–Aminopropyl)Trimethoxysilane-Modified Activated Porous Carbon

    No full text
    Volatile methyl siloxanes (VMS) must be removed because the formation of silica in the combustion process seriously affects the resource utilization of biogas. Herein, a series of APTMS ((3–aminopropyl)trimethoxysilane)-modified activated porous carbon (APC) adsorbents (named APTMS@APC) were prepared for VMS efficient removal. The as-prepared adsorbents were characterized using SEM, FTIR, Raman, X-ray diffraction analyses, and N2 adsorption/desorption. The results showed that the surface modification with APTMS enhanced the hydrophobicity of APC with the water contact angle increasing from 74.3° (hydrophilic) to 127.1° (hydrophobic), and meanwhile improved its texture properties with the SBET increasing from 981 to 1274 m2 g−1. The maximum breakthrough adsorption capacity of APTMS@APC for hexamethyldisiloxane (L2, model pollutant) was 360.1 mg g−1. Effects of an inlet L2 concentration (31.04–83.82 mg L−1) and a bed temperature (0–50 °C) on the removal of L2 were investigated. Meanwhile, after five adsorption–desorption cycles, the APTMS@APC demonstrated a superior cycling performance. This indicated that the hydrophobic APTMS@APC has a great significance to remove VMS
    corecore