217 research outputs found

    Elevated Plasma microRNA-105-5p Level in Patients With Idiopathic Parkinson’s Disease: A Potential Disease Biomarker

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disease, which still lacks a biomarker to aid in diagnosis and to differentiate diagnosis at the early stage of the disease. microRNAs (miRNAs) are small and evolutionary conserved non-coding RNAs that are involved in post-transcriptional gene regulation. Several miRNAs have been proposed as potential biomarkers in several diseases. In the present study, we screened miRNAs using a network vulnerability analysis, to evaluate their potential as PD biomarkers. We first extracted miRNAs that were differentially expressed between PD and healthy controls (HC) samples. Then we constructed the PD-specific miRNA-mRNA network and screened miRNA biomarkers using a new bioinformatics model. With this model, we identified miR-105-5p as a putative biomarker for PD. Moreover, we measured miR-105-5p levels in the plasma of patients with idiopathic PD (IPD) (n = 319), neurological disease controls (NDC, n = 305) and HC (n = 273) using reverse transcription real-time quantitative PCR (RT-qPCR). Our data clearly demonstrated that the plasma miR-105-5p level in IPD patients was significantly higher than those of HC (251%, p < 0.001) and NDC (347%, p < 0.001). There was no significant difference in miR-105-5p expression between IPD patients with or without anti-PD medications. Interestingly, we found that the plasma miR-105-5p expression level may be able to differentiate IPD from parkinsonian syndrome, essential tremor and other neurodegenerative diseases. We believe that a change in the plasma miR-105-5p level is a potential biomarker for IPD

    Mechanism and Role of Tumor Microenvironment in the Initiation and Progression of Bladder Cancer

    Get PDF
    Tumor microenvironment (TME) is a huge network, composed by tumor cells, tumor associated stromal cells, immune cells, cytokines and chemokines secreted by these cells, in which various cells communicate with each other. Bladder cancer is characterized of tendency of relapse, progression, metastasis because of the role of TME. With the application and development of new technologies recently, such as tumor bulk RNA-sequencing and singlecell transcriptome sequencing, the composition of TME for bladder cancer is increasingly clear and the complex cell-to-cell communication network is fully duged, which provides a new vision for the therapy of bladder cancer. This paper reviewed and further analysed the research hotspots of cellular components and extracellular matrix components of bladder cancer on the basis of the latest research progress

    Nrf2 deletion causes “benign” simple steatosis to develop into nonalcoholic steatohepatitis in mice fed a high-fat diet

    Get PDF
    BACKGROUND: Nonalcoholic fatty liver disease begins with the aberrant accumulation of triglyceride in the liver. Its spectrum includes the earliest stage of hepatic simple steatosis (SS), nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Generally, hepatic SS is often self-limited; however 10%-30% of patients with hepatic SS progress to NASH. The cause(s) of the transition from SS to NASH are unclear. We aimed to test the contribution of nuclear erythroid 2-related factor 2 (Nrf2) on the progression of “benign” SS to NASH in mice fed a high fat diet. In doing so, we discovered the influence of fatty acid in that progression. METHOD: The involvement of Nrf2 in defending against the development of NASH was studied in an experimental model induced by a high-fat diet. Wild-type and Nrf2-null mice were fed the diet. Their specimens were analyzed for pathology as well as for fatty acid content and ratios. RESULT: In feeding the high-fat diet to the Wild-type and the Nrf2-null mice, the Wild-type mice increased hepatic fat deposition without inflammation or fibrosis (i.e., simple steatosis), while the Nrf2-null mice had significantly more hepatic steatosis and substantial inflammation, (i.e., nonalcoholic steatohepatitis). In addition, as a result of the high-fat diet, SFA (C20: 0, C22: 0) and MUFA (C18: 1, C20: 1) content in Nrf2-null mice were significantly higher than in Wild-type mice. In the Nrf2-null mice the PUFA/TFA ratio decreased; conversely, the MUFA/TFA ratio increased. CONCLUSION: The deletion of Nrf2 causes “benign” SS to develop into NASH in mice fed with a high-fat diet, through prompt fatty acid accumulation and disruption of hepatic fatty acid composition in the liver

    Impact of the National Reimbursement Drug List Negotiation Policy on Accessibility of Anticancer Drugs in China: An Interrupted Time Series Study

    Get PDF
    Objective: Since 2016, the Chinese government has been regularly implementing the National Reimbursement Drug List Negotiation (NRDLN) to improve the accessibility of drugs. In the second round of NRDLN in July 2017, 18 anticancer drugs were included. This study analyzed the impact of the NRDLN on the accessibility of these 18 anticancer drugs in China. Methods: National hospital procurement data were collected from 2015 to 2019. As measurements of drug accessibility, monthly average of drug availability or defined daily dose cost (DDDc) was calculated. Interrupted time series (ITS) analysis was employed to evaluate the impact of NRDLN on drug accessibility. Multilevel growth curve models were estimated for different drug categories, regions or levels of hospitals. Results: The overall availability of 18 anticancer drugs increased from about 10.5% in 2015 to slightly over 30% in 2019. The average DDDc dropped from 527.93 CNY in 2015 to 401.87 CNY in 2019, with a reduction of 23.88%. The implementation of NRDLN was associated with higher availability and lower costs for all 18 anticancer drugs. We found an increasing level in monthly drug availability (β2 = 2.1126), which ascended more sharply after the implementation of NRDLN (β3 = 0.3656). There was a decreasing level in DDDc before July 2017 (β2 = −108.7213), together with a significant decline in the slope associated with the implementation of NRDLN (β3 = −4.8332). Compared to Traditional Chinese Medicines, the availability of Western Medicines was higher and increased at a higher rate (β3 = 0.4165 vs. 0.1108). Drug availability experienced a larger instant and slope increase in western China compared to other regions, and in secondary hospitals than tertiary hospitals. Nevertheless, regional and hospital-level difference in the effect of NRDLN on DDDc were less evident. Conclusion: The implementation of NRDLN improves the availability and reduces the cost of some anticancer drugs in China. It contributes to promoting accessibility of anticancer drugs, as well as relieving regional or hospital-level disparities. However, there are still challenges to benefit more patients sufficiently and equally. It requires more policy efforts and collaborative policy combination

    Direct Signal Detection Without Data‐Aided: A MIMO Functional Network Approach

    Get PDF
    Functional network (FN) has been successfully applied in many fields, but so far no methods of direct signal detection (DSD) using FN have been published. In this chapter, a novel DSD approach using FN, which can be applied to cases with a plural source signal sequence, with short sequence, and even with the absence of a training sequence, is presented. Firstly, a multiple‐input multiple‐output FN (MIMOFN), in which the initial input vector is devised via QR decomposition of the receiving signal matrix, is constructed to solve the special issues of DSD. In the meantime, the design method for the neural function of this special MIMOFN is proposed. Then the learning rule for the parameters of neural functions is trained and updated by back‐propagation (BP) algorithm. The correctness and effectiveness of the new approach are verified by simulation results, together with some special simulation phenomena of the algorithm. The proposed method can detect the source sequence directly from the observed output data by utilizing MIMOFN without a training sequence and estimating the channel impulse response

    Evolutionary genomics of the pandemic 2009 H1N1 influenza viruses (pH1N 1v)

    Get PDF
    There are ongoing health risks posed by the pandemic 2009 H1N1 influenza viruses. This research provides a detailed phylogenetic analysis in 394 sequences of H1N1 viruses, taken from swine, human and avian sources from 1918 to 2009, to estimate a temporal reconstruction of reassortment history of 2009 H1N1 viruses. H1N1 influenza viruses were first isolated from swine in 1930; in Europe, avian H1N1 viruses were first detected in pigs in 1979. Pigs have been considered a possible “mixing vessel” in which genetic material can be exchanged. There is a potential for novel progeny viruses to arise, to which humans would be susceptible

    Comparative Proteomic Analysis Provides New Insights Into Low Nitrogen-Promoted Primary Root Growth in Hexaploid Wheat

    Get PDF
    Nitrogen deficient environments can promote wheat primary root growth (PRG) that allows for nitrogen uptake in deep soil. However, the mechanisms of low nitrogen-promoted root growth remain largely unknown. Here, an integrated comparative proteome study using iTRAQ analysis on the roots of two wheat varieties and their descendants with contrasting response to low nitrogen (LN) stress was performed under control (CK) and LN conditions. In total, 84 differentially abundant proteins (DAPs) specifically involved in the process of LN-promoted PRG were identified and 11 pathways were significantly enriched. The Glutathione metabolism, endocytosis, lipid metabolism, and phenylpropanoid biosynthesis pathways may play crucial roles in the regulation of LN-promoted PRG. We also identified 59 DAPs involved in the common response to LN stress in different genetic backgrounds. The common responsive DAPs to LN stress were mainly involved in nitrogen uptake, transportation and remobilization, and LN stress tolerance. Taken together, our results provide new insights into the metabolic and molecular changes taking place in contrasting varieties under LN conditions, which provide useful information for the genetic improvement of root traits and nitrogen use efficiency in wheat

    A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny.

    Get PDF
    Arteriviruses are enveloped positive-strand RNA viruses that assemble and egress using the host cell's exocytic pathway. In previous studies, we demonstrated that most arteriviruses use a unique -2 ribosomal frameshifting mechanism to produce a C-terminally modified variant of their nonstructural protein 2 (nsp2). Like full-length nsp2, the N-terminal domain of this frameshift product, nsp2TF, contains a papain-like protease (PLP2) that has deubiquitinating (DUB) activity, in addition to its role in proteolytic processing of replicase polyproteins. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nsp2TF localizes to compartments of the exocytic pathway, specifically endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and Golgi complex. Here, we show that nsp2TF interacts with the two major viral envelope proteins, the GP5 glycoprotein and membrane (M) protein, which drive the key process of arterivirus assembly and budding. The PRRSV GP5 and M proteins were found to be poly-ubiquitinated, both in an expression system and in cells infected with an nsp2TF-deficient mutant virus. In contrast, ubiquitinated GP5 and M proteins did not accumulate in cells infected with the wild-type, nsp2TF-expressing virus. Further analysis implicated the DUB activity of the nsp2TF PLP2 domain in deconjugation of ubiquitin from GP5/M proteins, thus antagonizing proteasomal degradation of these key viral structural proteins. Our findings suggest that nsp2TF is targeted to the exocytic pathway to reduce proteasome-driven turnover of GP5/M proteins, thus promoting the formation of GP5-M dimers that are critical for arterivirus assembly

    Parthenolide Is Neuroprotective in Rat Experimental Stroke Model: Downregulating NF- Îş

    Get PDF
    Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Parthenolide (PN) has been proved to elicit a wide range of biological activities through its anti-inflammatory action in the treatment of migraine, arthritis, and atherosclerosis. To decide whether this effect applies to ischemic injury in brain, we therefore investigate the potential neuroprotective role of PN and the underlying mechanisms. Male Sprague-Dawley rats were randomly divided into Saline, Vehicle, and PN groups and a permanent middle cerebral artery occlusion (MCAO) model was used. PN administered intraperitoneally immediately after cerebral ischemia and once daily on the following days. At time points after MCAO, neurological deficit, infarct volume, and brain water content were measured. Immunohistochemistry, western blot and RT-PCR were used to analyze the expression of NF-ÎşB and caspase-1 in ischemic brain tissue. Phospho-p38MAPK and claudin-5 were detected by western blot. The results indicated that PN dramatically ameliorated neurological deficit, brain water content, and infarct volume, downregulated NF-ÎşB, phospho-p38MAPK, and caspase-1 expressions, and upregulated claudin-5 expression in ischemic brain tissue. Conclusions. PN protected the brain from damage caused by MCAO; this effect may be through downregulating NF-ÎşB, phosho-p38MAPK, and caspase-1 expressions and ameliorating BBB permeability
    • …
    corecore