189 research outputs found

    An Alternative to WSSS? An Empirical Study of the Segment Anything Model (SAM) on Weakly-Supervised Semantic Segmentation Problems

    Full text link
    The Segment Anything Model (SAM) has demonstrated exceptional performance and versatility, making it a promising tool for various related tasks. In this report, we explore the application of SAM in Weakly-Supervised Semantic Segmentation (WSSS). Particularly, we adapt SAM as the pseudo-label generation pipeline given only the image-level class labels. While we observed impressive results in most cases, we also identify certain limitations. Our study includes performance evaluations on PASCAL VOC and MS-COCO, where we achieved remarkable improvements over the latest state-of-the-art methods on both datasets. We anticipate that this report encourages further explorations of adopting SAM in WSSS, as well as wider real-world applications.Comment: Technique repor

    Research and comparison of pavement performance prediction based on neural networks and fusion transformer architecture

    Get PDF
    The decision-making process for pavement maintenance from a scientific perspective is based on accurate predictions of pavement performance. To improve the rationality of pavement performance indicators, comprehensive consideration of various influencing factors is necessary. To this end, four typical pavement performance indicators (i.e., Rutting Depth, International Roughness Index, Longitudinal Cracking, and Alligator Cracking) were predicted using the Long Term Pavement Performance (LTPP) database. Two types of data, i.e., local input variables and global input variables, were selected, and S-ANN and L-ANN models were constructed using a fully connected neural network. A comparative analysis of the predictive outcomes reveals the superior optimization of the L-ANN model. Subsequently, by incorporating structures such as self-attention mechanism, a novel predictive approach based on the Transformer architecture was proposed. The objective is to devise a more accurate predictive methodology for pavement performance indices, with the goal of guiding pavement maintenance and management efforts. Experimental results indicate that, through comparative analysis of three quantitative evaluation metrics (root mean square error, mean absolute error, coefficient of determination), along with visual scatter plots, the predictive model employing the fused Transformer architecture demonstrates higher robustness and accuracy within the domain of pavement performance prediction when compared to the L-ANN model. This outcome substantiates the efficacy and superiority of the model in terms of predictive performance, establishing it as a reliable tool for accurately reflecting the evolution of asphalt pavement performance. Furthermore, it furnishes a theoretical reference for determining optimal preventive maintenance timing for pavements

    Analysis of Multiple Scattering Characteristics of Cable-Stayed Bridges with Multi-band SAR

    Get PDF
    Accurate localization of multi-scattering features of cable-stayed bridges in multi-band Synthetic Aperture Radar (SAR) imagery is crucial for intelligent recognition of bridge targets within images, as well as for precise water level extraction. This study focuses on the Badong Yangtze River Bridge, utilizing Unmanned Aerial Vehicle (UAV) LiDAR data of the bridge, and analyzes the multi-scattering characteristics of different bridge structural targets based on Geometric Optics (GO) methods and the Range-Doppler principle. Furthermore, the study integrates LiDAR data of the bridge's cable-stays to examine their multi-scattering phenomena, finding that the undulations of the Yangtze River's surface waves significantly contribute to the pronounced double scattering features of the bridge's cable-stays. Additionally, statistical analysis of multi-source SAR data indicates that this phenomenon is not directly correlated with radar wavelength, implying no direct connection to surface roughness. Utilizing LiDAR point cloud data from the bridge's street lamps, this paper proposes a novel method for estimating water level elevation by identifying the center position of spots formed by double scattering from lamp posts. The results show that using TerraSAR ascending and descending orbit images, this method achieves a water level elevation accuracy of approximately 0.2 meters

    Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion

    Get PDF
    Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location–dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5′-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5′- and 3′-flap that was cleaved by flap endonuclease 1 and a 3′-5′ endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins

    Anisodamine combined with lidocaine improves healing of myocardial ischemia reperfusion injury in rats via PI3K/Akt signaling pathway

    Get PDF
    Purpose: To study the effects of anisodamine (Ad) combined with lidocaine (Ldc) on myocardial ischemia-reperfusion injury (MIRI) in rats, and its correlation with PI3K/AKT signaling pathway.Methods: A total of 70 healthy rats were randomly divided into S group, M group, Ad group, Ldc group, Ad + Ldc group, Ad + Ldc + LY group, and LY group. The cardiac hemodynamic indices in each group were determined, and the area of myocardial infarction measured. Serum biochemical indices were also determined. Furthermore, the protein expressions of p-Akt, T-Akt, Bcl-2, and Bax in myocardial cells were determined by Western blotting.Results: Compared with those in M group, Ad group, Ldc group, Ad + Ldc + LY group, and LY group, cardiac hemodynamic indices significantly improved, while the area of myocardial infarction was significantly reduced (p < 0.01). Furthermore, serum malondialdehyde (MDA) concentration but the activities of CK, CK-MB, TNF-α, and IL-6 declined, while the activities of superoxide dismutase (SOD), CAT and GSH-Px rose in Ad + Ldc group (p < 0.01). In Ad + Ldc group, p-Akt, T-Akt, and Bcl-2 increased, while Bax significantly decreased. Through comparison LY294002 significantly inhibited the protective effect of Ad combined with Ldc against MIRI in rats (p < 0.01).Conclusion: Anisodamine combination with lidocaine has a protective effect against MIRI in rats via PI3K/Akt signaling pathway, thus indicating that it is a potential therapeutic strategy for the management of myocardial ischemia-reperfusion

    AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair

    Get PDF
    Base excision repair (BER) of an oxidized base within a trinucleotide repeat (TNR) tract can lead to TNR expansions that are associated with over 40 human neurodegenerative diseases. This occurs as a result of DNA secondary structures such as hairpins formed during repair. We have previously shown that BER in a TNR hairpin loop can lead to removal of the hairpin, attenuating or preventing TNR expansions. Here, we further provide the first evidence that AP endonuclease 1 (APE1) prevented TNR expansions via its 3′-5′ exonuclease activity and stimulatory effect on DNA ligation during BER in a hairpin loop. Coordinating with flap endonuclease 1, the APE1 3′-5′ exonuclease activity cleaves the annealed upstream 3′-flap of a double-flap intermediate resulting from 5′-incision of an abasic site in the hairpin loop. Furthermore, APE1 stimulated DNA ligase I to resolve a long double-flap intermediate, thereby promoting hairpin removal and preventing TNR expansions

    Crosstalk between MSH2–MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair

    Get PDF
    Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion

    A 5\u27, 8-cyclo-2\u27-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β.

    Get PDF
    5′,8-cyclo-2′-deoxypurines (cdPus) are common forms of oxidized DNA lesions resulting from endogenous and environmental oxidative stress such as ionizing radiation. The lesions can only be repaired by nucleotide excision repair with a low efficiency. This results in their accumulation in the genome that leads to stalling of the replication DNA polymerases and poor lesion bypass by translesion DNA polymerases. Trinucleotide repeats (TNRs) consist of tandem repeats of Gs and As and therefore are hotspots of cdPus. In this study, we provided the first evidence that both (5′R)- and (5′S)-5′,8-cyclo-2′-deoxyadenosine (cdA) in a CAG repeat tract caused CTG repeat deletion exclusively during DNA lagging strand maturation and base excision repair. We found that a cdA induced the formation of a CAG loop in the template strand, which was skipped over by DNA polymerase β (pol β) lesion bypass synthesis. This subsequently resulted in the formation of a long flap that was efficiently cleaved by flap endonuclease 1, thereby leading to repeat deletion. Our study indicates that accumulation of cdPus in the human genome can lead to TNR instability via a unique lesion bypass by pol β

    Is Centralized Training with Decentralized Execution Framework Centralized Enough for MARL?

    Full text link
    Centralized Training with Decentralized Execution (CTDE) has recently emerged as a popular framework for cooperative Multi-Agent Reinforcement Learning (MARL), where agents can use additional global state information to guide training in a centralized way and make their own decisions only based on decentralized local policies. Despite the encouraging results achieved, CTDE makes an independence assumption on agent policies, which limits agents to adopt global cooperative information from each other during centralized training. Therefore, we argue that existing CTDE methods cannot fully utilize global information for training, leading to an inefficient joint-policy exploration and even suboptimal results. In this paper, we introduce a novel Centralized Advising and Decentralized Pruning (CADP) framework for multi-agent reinforcement learning, that not only enables an efficacious message exchange among agents during training but also guarantees the independent policies for execution. Firstly, CADP endows agents the explicit communication channel to seek and take advices from different agents for more centralized training. To further ensure the decentralized execution, we propose a smooth model pruning mechanism to progressively constraint the agent communication into a closed one without degradation in agent cooperation capability. Empirical evaluations on StarCraft II micromanagement and Google Research Football benchmarks demonstrate that the proposed framework achieves superior performance compared with the state-of-the-art counterparts. Our code will be made publicly available
    • …
    corecore