58 research outputs found

    The state of water and fat during the maturation of Cheddar cheese

    Get PDF
    Cheddar cheese predicted to develop into different quality classes has been evaluated by time domain Nuclear Magnetic Resonance, Thermogravimetric analysis and quantitative sensory analysis. The water and fat proton signals in the transverse relaxation decay curves have been deconvoluted. Proton transverse relaxation values for both the water and fat fractions decrease and the relative %age of the proton peak area, predominantly from the fat increases over a 450-day ripening period. The thermodynamic free water percentage increases during maturation. Water and fat attributes can distinguish between Cheddar cheese batches after 56 days. Cheese batches which have lower transverse relaxation values for the water and fat proton fractions and a higher relative %age of the proton peak area predominantly from fat at 56 days, mature after 270 days to be more yellow, rubbery and smooth, have a less sour and lingering aftertaste and are also harder to form into a cheese ball

    Selection of potential molecular markers for cheese ripening and quality prediction by NMR spectroscopy

    Get PDF
    © 2020 Elsevier Ltd Predicting cheese quality as early as possible after ripening is important for quality control in the cheese industry. The main aim of this study was to investigate potential metabolites for predictive models of Cheddar cheese quality. Metabolites in aqueous extracts of Cheddar cheese were identified by Nuclear Magnetic Resonance. The metabolites were used to measure the kinetics of up to 450 days ripening in Cheddar cheese. The proton ratios of citrulline and arginine relative to the overall proton content of the aqueous extract are the most important indices for assessing the ripening of Cheddar cheese. The ratios of citrulline and arginine decrease by 59% and 69%, respectively, after 450 days ripening. In comparison to the premium batch B cheese, batch C which was predicted to attain a lower quality level, had higher serine and β-galactose as well as lower lactic acid levels and also had a less mature sensorial profile. Tyrosine, tyramine and lysine are highly correlated with mature Cheddar cheese sensory attributes. β-Galactose and glycerol are correlated with young Cheddar cheese sensory attributes. These metabolites can be used to predict cheese quality

    Algorithmic and sensor-based research on Chinese children’s and adolescents’ screen use behavior and light environment

    Get PDF
    BackgroundMyopia poses a global health concern and is influenced by both genetic and environmental factors. The incidence of myopia tends to increase during infectious outbreaks, such as the COVID-19 pandemic. This study examined the screen-time behaviors among Chinese children and adolescents and investigated the efficacy of artificial intelligence (AI)-based alerts in modifying screen-time practices.MethodsA cross-sectional analysis was performed using data from 6,716 children and adolescents with AI-enhanced tablets that monitored and recorded their behavior and environmental light during screen time.ResultsThe median daily screen time of all participants was 58.82 min. Among all age groups, elementary-school students had the longest median daily screen time, which was 87.25 min and exceeded 4 h per week. Children younger than 2 years engaged with tablets for a median of 41.84 min per day. Learning accounted for 54.88% of participants’ screen time, and 51.03% (3,390/6,643) of the participants used tablets for 1 h at an average distance <50 cm. The distance and posture alarms were triggered 807,355 and 509,199 times, respectively. In the study, 70.65% of the participants used the tablet under an illuminance of <300 lux during the day and 61.11% under an illuminance of <100 lux at night. The ambient light of 85.19% of the participants exceeded 4,000 K color temperature during night. Most incorrect viewing habits (65.49% in viewing distance; 86.48% in viewing posture) were rectified swiftly following AI notifications (all p < 0.05).ConclusionYoung children are increasingly using digital screens, with school-age children and adolescents showing longer screen time than preschoolers. The study highlighted inadequate lighting conditions during screen use. AI alerts proved effective in prompting users to correct their screen-related behavior promptly

    Activation of Interleukin-1β Release by the Classical Swine Fever Virus Is Dependent on the NLRP3 Inflammasome, Which Affects Virus Growth in Monocytes

    Get PDF
    Classical swine fever virus (CSFV) is a classic Flavivirus that causes the acute, febrile, and highly contagious disease known as classical swine fever (CSF). Inflammasomes are molecular platforms that trigger the maturation of proinflammatory cytokines to engage innate immune defenses that are induced upon cellular infection or stress. However, the relationship between the inflammasome and CSFV infection has not been thoroughly characterized. To understand the function of the inflammasome response to CSFV infection, we infected porcine peripheral blood monocytes (PBMCs) with CSFV. Our results indicated that CSFV infection induced both the generation of pro-interleukin-1β (pro-IL-1β) and its processing in monocytes, leading to the maturation and secretion of IL-1β through the activation of caspase 1. Moreover, CSFV infection in PBMCs induced the production and cleavage of gasdermin D (GSDMD), which is an inducer of pyroptosis. Additional studies showed that CSFV-induced IL-1β secretion was mediated by NLRP3 and that CSFV infection could sufficiently activate the assembly of the NLRP3 inflammasome in monocytes. These results revealed that CSFV infection inhibited the expression of NLRP3, and knockdown of NLRP3 enhanced the replication of CSFV. In conclusion, these findings demonstrate that the NLRP3 inflammasome plays an important role in the innate immune response to CSFV infection

    Opportunities and challenges of China’s inquiry-based education reform in middle and high schools: Perspectives of science teachers and teacher educators

    Full text link
    Consistent with international trends, an emergent interest in inquiry-based science teaching and learning in K-12 schools is also occurring in China. This study investigates the possibilities for and the barriers to enactment of inquiry-based science education in Chinese schools. Altogether 220 Chinese science teachers, science teacher educators and researchers (primarily from the field of chemistry education) participated in this study in August 2001. Participants represented 13 cities and provinces in China. We administered two questionnaires, one preceding and one following a 3-hour presentation by a US science educator and researcher about inquiry-based teaching and learning theories and practices. In each of three sites in which the study was conducted (Shanghai, Guangzhou and Beijing), questionnaires were administered, and four representative participants were interviewed. Our coding and analysis of quantifiable questionnaire responses (using a Likert scale), of open-ended responses, and of interview transcripts revealed enthusiastic interest in incorporating inquiry-based teaching and learning approaches in Chinese schools. However, Chinese educators face several challenges: (a) the national college entrance exam needs to align with the goals of inquiry-based teaching; (b) systemic reform needs to happen in order for inquiry-based science to be beneficial to students, including a change in the curriculum, curriculum materials, relevant resources, and teacher professional development; (c) class size needs to be reduced; and (d) an equitable distribution of resources in urban and rural schools needs to occur.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42933/1/10763_2005_Article_1517.pd

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Bimodal Neutron and X-ray Imaging Driven by a Single Electron Linear Accelerator

    No full text
    Both X-ray imaging and neutron imaging are essential methods in non-destructive testing. In this work, a bimodal imaging method combining neutron and X-ray imaging is introduced. The experiment is based on a small electron accelerator-based photoneutron source that can simultaneously generate the following two kinds of radiations: X-ray and neutron. This identification method utilizes the attenuation difference of the two rays’ incidence on the same material to determine the material’s properties based on dual-imaging fusion. It can enhance the identification of the materials from single ray imaging and has the potential for widespread use in on-site, non-destructive testing where metallic materials and non-metallic materials are mixed

    Multi-scenario investment forecast of new energy projects based on multiple linear regression and comprehensive evaluation model of differentiated project priorities

    No full text
    As China's resource shortage and environmental pollution intensify, the demand for new energy and electric energy substitution is becoming higher and higher. Accurately predicting the investment scale of China's new energy projects is of great practical significance for improving the efficiency of resource allocation and economically meeting energy demand. This paper builds a scientific and precise investment model for new energy projects from both macro and micro perspectives. First, from a macro perspective, considering macro indicators such as the external environment and internal economy, an annual total investment forecast model based on multiple linear regression is constructed, in order to predict the annual total investment scale of new energy investment entities and achieve preliminary accurate investment; second, designed the evaluation index system of different project priorities from three perspectives of external environment, internal development of enterprises and social development, and constructed the comprehensive weight design method based on AN-EWM and the comprehensive evaluation method of TOPSIS, in order to realize the priority of differentiated projects. Sorting; finally, a new energy project located in a city in northern China is selected as the research subject, and a multi-scenario example analysis is carried out. The results show that the new energy project investment scale index system constructed in this paper can effectively evaluate the investment capacity of the main body of the new energy project, and can better predict the total investment of the new energy investment project, so that the deviation rate can be controlled within 5 %, and the priority evaluation model constructed in this paper can provide a complete calculation method and a reference method for the judgement of the investment priority, which can promote accurate investment
    • …
    corecore