17 research outputs found

    JointNet: Extending Text-to-Image Diffusion for Dense Distribution Modeling

    Full text link
    We introduce JointNet, a novel neural network architecture for modeling the joint distribution of images and an additional dense modality (e.g., depth maps). JointNet is extended from a pre-trained text-to-image diffusion model, where a copy of the original network is created for the new dense modality branch and is densely connected with the RGB branch. The RGB branch is locked during network fine-tuning, which enables efficient learning of the new modality distribution while maintaining the strong generalization ability of the large-scale pre-trained diffusion model. We demonstrate the effectiveness of JointNet by using RGBD diffusion as an example and through extensive experiments, showcasing its applicability in a variety of applications, including joint RGBD generation, dense depth prediction, depth-conditioned image generation, and coherent tile-based 3D panorama generation

    An 11-bp Indel Polymorphism within the CSN1S1 Gene Is Associated with Milk Performance and Body Measurement Traits in Chinese Goats

    No full text
    The casein alpha s1 (CSN1S1) gene encodes α-s1 casein, one of the proteins constituting milk, which affects milk performance, as well as improving the absorption of calcium and bone development in mammals. A previous study found that an 11-bp insertion/deletion (indel) of this gene strongly affected litter size in goats. However, to our knowledge, the relationships between this polymorphism and the milk performance and body measurement traits of goats have not been reported. In this paper, the previously identified indel has been recognized in three Chinese goat breeds, namely the Guanzhong dairy goat (GZDG; n = 235), Shaanbei white cashmere goat (SBWC; n = 1092), and Hainan black goat (HNBG; n = 278), and the following three genotypes have been studied for all of the breeds: insertion/insertion (II), deletion/deletion (DD), and insertion/deletion (ID). The allele frequencies analyzed signified that the frequencies of the “D” allele were higher (47.8%–65.5%), similar to the previous report, which indicates that this polymorphism is genetically stable in different goat breeds. Further analysis showed that this indel was markedly associated with milk fat content, total solids content, solids-not-fat content, freezing point depression, and acidity in GZDG (p < 0.05), and also affected different body measurement traits in all three breeds (p < 0.05). The goats with II genotypes had superior milk performance, compared with the others; however, goats with DD genotypes had better body measurement sizes. Hence, it may be necessary to select goats with an II or DD genotype, based on the desired traits, while breeding. Our study provides information on the potential impact of the 11-bp indel polymorphism of the CSN1S1 gene for improving the milk performance and body measurement traits in goats

    Ssc-MiR-21-5p and Ssc-MiR-615 Regulates the Proliferation and Apoptosis of Leydig Cells by Targeting SOX5

    No full text
    Leydig cells (LCs) are the predominant cells of androgen production, which plays key roles in spermatogenesis and maintaining male secondary sexual characteristics. Abnormal development of LCs affects androgen levels in vivo, affects fertility and may even lead to infertility. Little is known about the regulation mechanism on LCs’ development and maturation in domestic animals, especially the regulation of non-coding RNAs. In this study, we continued to dig deeper in the previous RNA-seq data of porcine LCs from our group, combined with detecting the expression profiles in different tissues and different types of cells in the testis, to screen out candidate microRNAs (miRNAs) that may affect the regulation of LCs. A total of two miRNAs, ssc-miR-21-5p and ssc-miR-615 (“ssc” is omitted below), were finally determined. After overexpression and interference of miRNAs in vitro, the effects of candidate miRNAs on the proliferation and apoptosis of TM3 (mouse Leydig cell line) were explored. The results showed that miR-21-5p led to a decrease in TM3 cell density and p53 (apoptosis related protein) expression. Meanwhile, miR-21-5p decreased EdU positive cell numbers, but increased TUNEL positive cell numbers, suggesting miR-21-5p could inhibit proliferation and promote apoptosis. Conversely, miR-615 could increase TM3 cell density. Western blot and TUNEL assay indicated miR-615 inhibited apoptosis, but had no effect on proliferation. In addition, Sox5 was identified a potential target gene of these two miRNAs by Dual-Luciferase reporter system assay. Our findings about functions of miRNAs in TM3 and the mapping of miRNAs-target gene regulatory network would provide an important basis for the further elucidation of miRNAs in regulating pig LCs

    RBM20-Mediated Pre-mRNA Splicing Has Muscle-Specificity and Differential Hormonal Responses between Muscles and in Muscle Cell Cultures

    No full text
    Pre-mRNA splicing plays an important role in muscle function and diseases. The RNA binding motif 20 (RBM20) is a splicing factor that is predominantly expressed in muscle tissues and primarily regulates pre-mRNA splicing of Ttn, encoding a giant muscle protein titin that is responsible for muscle function and diseases. RBM20-mediated Ttn splicing has been mostly studied in heart muscle, but not in skeletal muscle. In this study, we investigated splicing specificity in different muscle types in Rbm20 knockout rats and hormonal effects on RBM20-mediated splicing both in cellulo and in vivo studies. The results revealed that RBM20 is differentially expressed across muscles and RBM20-mediated splicing is muscle-type specific. In the presence of RBM20, Ttn splicing responds to hormones in a muscle-type dependent manner, while in the absence of RBM20, Ttn splicing is not affected by hormones. In differentiated and undifferentiated C2C12 cells, RBM20-mediated splicing in response to hormonal effects is mainly through genomic signaling pathway. The knowledge gained from this study may help further understand muscle-specific gene splicing in response to hormone stimuli in different muscle types

    Superior triethylamine detection at room temperature by {-112} faceted WO3 gas sensor

    No full text
    Effective detection of triethylamine (TEA) is important for the human health and environment, while challenging. In this study, a novel hierarchical flower-like WO3 nanomaterial was synthesized using a microwave-assisted gas-liquid interface method. The morphology and exposed facets of WO3 nanomaterials can be manipulated through the control of the volume ratio between the water and ethylene glycol (EG) during the synthesis. Our results demonstrate that the samples prepared with water/EG ratio of 8:32 are mainly exposed {-112} facets, which have the best gas sensing response of 180.7 to 100 ppm TEA at room temperature (RT). Its superior gas sensing performance and stability are also evidenced by the short recovery speed of 72 s to 100 ppm TEA at RT. More importantly, our experiments revealed an excellent selectivity in terms to other volatile organic compounds and further confirmed by the first-principles theoretical results. The outcomes of this study suggest that the surface engineering technique is a promising approach to improve the gas sensing performance of metal oxides gas sensor and show great potential for TEA practical detection and monitoring.</p

    Critical Regularizations for Neural Surface Reconstruction in the Wild

    Full text link
    Neural implicit functions have recently shown promising results on surface reconstructions from multiple views. However, current methods still suffer from excessive time complexity and poor robustness when reconstructing unbounded or complex scenes. In this paper, we present RegSDF, which shows that proper point cloud supervisions and geometry regularizations are sufficient to produce high-quality and robust reconstruction results. Specifically, RegSDF takes an additional oriented point cloud as input, and optimizes a signed distance field and a surface light field within a differentiable rendering framework. We also introduce the two critical regularizations for this optimization. The first one is the Hessian regularization that smoothly diffuses the signed distance values to the entire distance field given noisy and incomplete input. And the second one is the minimal surface regularization that compactly interpolates and extrapolates the missing geometry. Extensive experiments are conducted on DTU, BlendedMVS, and Tanks and Temples datasets. Compared with recent neural surface reconstruction approaches, RegSDF is able to reconstruct surfaces with fine details even for open scenes with complex topologies and unstructured camera trajectories.Comment: CVPR 202

    SR Protein Kinases Regulate the Splicing of Cardiomyopathy-Relevant Genes via Phosphorylation of the RSRSP Stretch in RBM20

    No full text
    (1) Background: RNA binding motif 20 (RBM20) regulates mRNA splicing specifically in muscle tissues. Missense mutations in the arginine/serine (RS) domain of RBM20 lead to abnormal gene splicing and have been linked to severe dilated cardiomyopathy (DCM) in human patients and animal models. Interestingly, many of the reported DCM-linked missense mutations in RBM20 are in a highly conserved RSRSP stretch within the RS domain. Recently, it was found that the two Ser residues within this stretch are constitutively phosphorylated, yet the identity of the kinase(s) responsible for phosphorylating these residues, as well as the function of RSRSP phosphorylation, remains unknown. (2) Methods: The ability of three known SR protein kinases (SRPK1, CLK1, and AKT2) to phosphorylate the RBM20 RSRSP stretch and regulate target gene splicing was evaluated by using both in vitro and in vivo approaches. (3) Results: We found that all three kinases phosphorylated S638 and S640 in the RSRSP stretch and regulated RBM20 target gene splicing. While SRPK1 and CLK1 were both capable of directly phosphorylating the RS domain in RBM20, whether AKT2-mediated control of the RS domain phosphorylation is direct or indirect could not be determined. (4) Conclusions: Our results indicate that SR protein kinases regulate the splicing of a cardiomyopathy-relevant gene by modulating phosphorylation of the RSRSP stretch in RBM20. These findings suggest that SR protein kinases may be potential targets for the treatment of RBM20 cardiomyopathy

    Generation and characterization of a monoclonal antibody against human BCL6 for immunohistochemical diagnosis.

    No full text
    BackgroundHuman B-cell lymphoma 6 (BCL6) gene, usually coding protein of 706 amino acids, is closely associated with large B cell lymphoma. Researches showed that protein mutation or change of expression levels usually happened in the mounting non-hodgkin lymphoma (NHL). Thus BCL6 is considered to be involved in germinal center (GC)-derived lymphoma.ResultsThe BCL61-350 gene codons were optimized for prokaryotic system. After expression of BCL61-350 in E. coli, the BCL61-350 protein was purified with Ni column. Then the BCL61-350 protein, mixing with QuickAntibody-Mouse5W adjuvant, was injected into Balb/c mice. After immunization and cell fusion, a stable cell line named 1E6A4, which can secrete anti-BCL6 antibody, was obtained. The isotype of 1E6A4 mAb was determined as IgG2a, and the affinity constant reached 5.12Ă—1010 L/mol. Furthermore, the specificity of the mAb was determined with ELISA, western blot and immunohistochemistry. Results indicated that the 1E6A4 mAb was able to detect BCL6 specifically and sensitively.ConclusionsBCL61-350 antigen has been successfully generated with an effective and feasible method, and a highly specific antibody named 1E6A4 against BCL6 has been screened and characterized in this study, which was valuable in clinical diagnosis

    Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface?

    No full text
    International audienceConversion-type batteries with electrode materials partially dissolved in a liquid electrolyte exhibit high specific capacity and excellent redox kinetics, but currently poor stability due to the shuttle effect. Using a solid-electrolyte separator to block the mass exchange between the cathode and the anode can eliminate the shuttle effect. A stable interface between the solid-electrolyte separator and the liquid electrolyte is essential for the battery performance. Here, we demonstrate that a stable interface with low interfacial resistance and limited side reactions can be formed between the sulfide solid-electrolyte β-Li(3)PS(4) and the widely used ether-based liquid electrolytes, under both reduction and oxidation conditions, due to the rapid formation of an effective protective layer of ether-solvated Li(3)PS(4) at the sulfide/liquid electrolyte interface. This discovery has inspired the design of a β-Li(3)PS(4)-coated solid-electrolyte Li(7)P(3)S(11) separator with a simultaneously high ion-conduction ability and good interfacial stability with the liquid electrolyte, so that hybrid lithium-sulfur (Li-S) batteries with this composite separator conserve a high discharge capacity of 1047 mA h g(-1) and a high second discharge plateau of 2.06 V after 150 cycles
    corecore