3,765 research outputs found

    Tribological performances of fabric self-lubricating liner with different weft densities under severe working conditions

    Get PDF
    Several woven fabric self-lubricating liners with weft densities of 200-450 root/10cm in a spacing of 50 root/10cm have been prepared to investigate the tribological performances of the liner under severe working conditions, such as low velocity and heavy load (110, 179 and 248 MPa) and high velocity and light load (9, 18 and 27 m/min) by utilizing the self-lubricating liner performance assessment tester, and MMU-5G friction and wear tester respectively. The worn surface is characterized using confocal laser scanning microscopy. The tribological results show that the fabric self-lubricating liners with different weft densities share almost the same tribological property variation tendency. Fabric tightness affects the wear rate and the stability of wear resistance of liners under severe working conditions. The overall level of friction coefficient and the wear rate of liners with different weft densities are influenced by the cold flow degree of the polymer. In addition, proper weft density improves the tribological properties of liner and a preferred weft density for the liner under severe working conditions is found to be 300-350 root/10cm

    Folding approach to topological order enriched by mirror symmetry

    Get PDF
    We develop a folding approach to study two-dimensional symmetry-enriched topological (SET) phases with the mirror reflection symmetry. Our folding approach significantly transforms the mirror SETs, such that their properties can be conveniently studied through previously known tools: (i) it maps the nonlocal mirror symmetry to an onsite Z[subscript 2] layer-exchange symmetry after folding the SET along the mirror axis, so that we can gauge the symmetry; (ii) it maps all mirror SET information into the boundary properties of the folded system, so that they can be studied by the anyon condensation theory—a general theory for studying gapped boundaries of topological orders; and (iii) it makes the mirror anomalies explicitly exposed in the boundary properties, i.e., strictly 2D SETs and those that can only live on the surface of a 3D system can be easily distinguished through the folding approach. With the folding approach, we derive a set of physical constraints on data that describes mirror SET, namely, mirror permutation and mirror symmetry fractionalization on the anyon excitations in the topological order. We conjecture that these constraints may be complete, in the sense that all solutions are realizable in physical systems. Several examples are discussed to justify this. Previously known general results on the classification and anomalies are also reproduced through our approach.China. Ministry of Science and Technology (Grant 2015CB921700)National Natural Science Foundation (China) (Grant 11874115)Perimeter Institute for Theoretical Physic

    Real-time motion data annotation via action string

    Get PDF
    Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target, we construct a hierarchical action string structure to quickly label each given action string. The experimental results demonstrate the efficacy and efficiency of our method

    Real-space construction of crystalline topological superconductors and insulators in 2D interacting fermionic systems

    Full text link
    The construction and classification of crystalline symmetry protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Crystalline SPT phases are not only of conceptual importance, but also provide great opportunities towards experimental realization since space group symmetries naturally exist for any realistic material. In this paper, we systematically classify the crystalline topological superconductors (TSC) and topological insulators (TI) in 2D interacting fermionic systems by using an explicit real-space construction. In particular, we discover an intriguing fermionic crystalline topological superconductor that can only be realized in interacting fermionic systems (i.e., not in free-fermion or bosonic SPT systems). Moreover, we also verify the recently conjectured crystalline equivalence principle for generic 2D interacting fermionic systems.Comment: 39+37 pages, 10+13 figures, 3+1 tables, all comments and suggestions are very welcom
    corecore