86,677 research outputs found

    Design and analysis of a wire-driven flexible manipulator for bronchoscopic interventions

    Get PDF
    Bronchoscopic interventions are widely performed for the diagnosis and treatment of lung diseases. However, for most endobronchial devices, the lack of a bendable tip restricts their access ability to get into distal bronchi with complex bifurcations. This paper presents the design of a new wire-driven continuum manipulator to help guide these devices. The proposed manipulator is built by assembling miniaturized blocks that are featured with interlocking circular joints. It has the capability of maintaining its integrity when the lengths of actuation wires change due to the shaft flex. It allows the existence of a relatively large central cavity to pass through other instruments and enables two rotational degrees of freedom. All these features make it suitable for procedures where tubular anatomies are involved and the flexible shafts have to be considerably bent in usage, just like bronchoscopic interventions. A kinematic model is built to estimate the relationship between the translations of actuation wires and the manipulator tip position. A scale-up model is produced for evaluation experiments and the results validate the performance of the proposed mechanism

    A predictive standard model for heavy electron systems

    Full text link
    We propose a predictive standard model for heavy electron systems based on a detailed phenomenological two-fluid description of existing experimental data. It leads to a new phase diagram that replaces the Doniach picture, describes the emergent anomalous scaling behavior of the heavy electron (Kondo) liquid measured below the lattice coherence temperature, T*, seen by many different experimental probes, that marks the onset of collective hybridization, and enables one to obtain important information on quantum criticality and the superconducting/antiferromagnetic states at low temperatures. Because T* is ~J^2\rho/2, the nearest neighbor RKKY interaction, a knowledge of the single-ion Kondo coupling, J, to the background conduction electron density of states, \rho, makes it possible to predict Kondo liquid behavior, and to estimate its maximum superconducting transition temperature in both existing and newly discovered heavy electron families.Comment: 4 pages, 2 figures, submitted to J. Phys.: Conf. Ser. for SCES 201

    Intrinsic Percolative Superconductivity in Heavily Overdoped High Temperature Superconductors

    Full text link
    Magnetic measurements on heavily overdoped La2xSrxCuO4La_{2-x}Sr_xCuO_4, Tl2Ba2CuO6Tl_2Ba_2CuO_6, Bi2Sr2CuO6Bi_2Sr_2CuO_6 and Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8 single crystals reveal a new type magnetization hysteresis loops characterized by the vanishing of usual central peak near zero field. Since this effect has been observed in various systems with very different structural details, it reflects probably a generic behavior for all high temperature superconductors. This easy penetration of magnetic flux can be understood in the picture of percolative superconductivity due to the inhomogeneous electronic state in heavily overdoped regime.Comment: 4 pages, 5 figure

    Evaluation of SLAM algorithms for Search and Rescue applications

    Get PDF
    This research investigates three SLAM algorithms on a low-cost mobile robot and finds the algorithms’ performance through a set of experiments including different types of ground surfaces

    Thermodynamics of an integrable model for electrons with correlated hopping

    Full text link
    A new supersymmetric model for electrons with generalized hopping terms and Hubbard interaction on a one-dimensional lattice is solved by means of the Bethe Ansatz. We investigate the phase diagram of this model by studying the ground state and excitations of the model as a function of the interaction parameter, electronic density and magnetization. Using arguments from conformal field theory we can study the critical exponents describing the asymptotic behaviour of correlation functions at long distances.Comment: 24 pp., latex+epsf, figures include

    The Complete KLT-Map Between Gravity and Gauge Theories

    Full text link
    We present the complete map of any pair of super Yang-Mills theories to supergravity theories as dictated by the KLT relations in four dimensions. Symmetries and the full set of associated vanishing identities are derived. A graphical method is introduced which simplifies counting of states, and helps in identifying the relevant set of symmetries.Comment: 41 pages, 16 figures, published version, typos corrected, references adde

    Measuring topic network centrality for identifying technology and technological development in online communities

    Get PDF
    Online communities are a rapidly growing knowledge repository that provides scholarly research, technical discussion, and social interactivity. This abundance of online information increases the difficulty of keeping up with new developments difficult for researchers and practitioners. Thus, we introduced a novel method that analyses both knowledge and social sentiment within the online community to discover the topical coverage of emerging technology and trace technological trends. The method utilizes the Weibull distribution and Shannon entropy to measure and link social sentiment with technological topics. Based on question-and-answer and social sentiment data from Zhihu, which is an online question and answer (Q&A) community with high-profile entrepreneurs and public intellectuals, we built an undirected weighting network and measured the centrality of nodes for technology identification. An empirical study on artificial intelligence technology trends supported by expert knowledge-based evaluation and cognition provides sufficient evidence of the method's ability to identify technology. We found that the social sentiment of hot technological topics presents a long-tailed distribution statistical pattern. High similarity between the topic popularity and emerging technology development trends appears in the online community. Finally, we discuss the findings in various professional fields that are widely applied to discover and track hot technological topics
    corecore