83 research outputs found

    Association between Polymorphisms of ERCC1 and Response in Patients with Advanced Non-small Cell Lung Cancer Receiving Cisplatin-based Chemotherapy

    Get PDF
    Background and objective Results of studies on genetic polymorphisms of ERCC1 gene in DNA repair pathway which may affect response to platinum-based chemotherapy and survival in patients with non-small cell lung cancer are conflicting. The aim of this study is to prospectively assess the association between single nucleotide polymorphisms of C8092A and codon118 in ERCC1 and drug response in 90 patients with advanced non-small cell lung cancer treated with cisplatin-based chemotherapy. Methods All patients were treated with cisplatin-based chemotherapy. Genotypes of ERCC1 C8092A and codon118 were examined by sequencing, and the association between genotypes and response was evaluated. Results Genotype frequencies of ERCC1 C8092A were CC 40.0% (36/90), CA 48.9% (44/90) and AA 11.1% (10/90), frequencies of codon118 were CC 58.9% (53/90), CT 34.4% (31/90) and TT 6.7% (6/90). There was no significant difference in response rate of patients carrying with CC, compared with CA plus AA in C8092A (33.3% vs 29.6%, P=0.71). Response rate of patients carrying with CC in ERCC1 118 was 32.1%, 24.3% with CT plus CC (P=0.43). There was no difference in progression free survival between patients carrying with CC and CT plus TT in C8092A (5.2 months vs 5.4 months, P=0.62). There was no difference in progression free survival between patients carrying with CC and CA plus AA (5.5 months vs 5.3 months, P=0.59). Conclusion The results suggest that there is no association between polymorphisms in ERCC1 C8092A and codon118 and response in patients with advanced non-small cell lung cancer receiving cisplatin-based chemotherapy

    MicroRNA-542 suppressed the proliferation of human glioma cells by targeting talin-2 (TLN2)

    Get PDF
    Purpose: To investigate the effect of miR-542 in the development of human glioma. Methods: The expressions of miR-542 and TLN2 in glioma cells and normal human astrocytes were determined using qRT-PCR, while MTT and colony formation assays were used to determine cell proliferation. Western blotting was used to determine protein expression. Results: It was revealed that miR-542 was significantly downregulated in glioma cells. Overexpression of miR-542 inhibited the proliferation and clonogenicity of glioma cells via induction of apoptosis. The percentage of apoptotic U87 cells increased from 5.32 in control to 26.76 upon miR-542 overexpression. Moreover, TLN2 was identified as the functional regulatory target of miR542 in glioma. The expression of TLN2 was markedly upregulated in human glioma cells. However, overexpression of miR-542 suppressed TLN2 expression. Silencing of TLN2 mimicked the tumor-suppressive effects of miR-542 in glioma cells, but this effect was blocked by TLN2 over-expression. Conclusion: These results suggest that miR-542 exerted glioma-suppressive effect, with TLN2 as its functional regulatory target. Keywords: Glioma; Proliferation; Micro-RNA; Tumorigenesis; MiR-542; Apoptosis; Prognosis; talin-2; Oncogen

    Identification of hub genes and key signaling pathways by weighted gene co-expression network analysis for human aortic stenosis and insufficiency

    Get PDF
    BackgroundHuman aortic valve stenosis (AS) and insufficiency (AI) are common diseases in aging population. Identifying the molecular regulatory networks of AS and AI is expected to offer novel perspectives for AS and AI treatment.MethodsHighly correlated modules with the progression of AS and AI were identified by weighted genes co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by the clusterProfiler program package. Differentially expressed genes (DEGs) were identified by the DESeqDataSetFromMatrix function of the DESeq2 program package. The protein-protein interaction (PPI) network analyses were implemented using the STRING online tool and visualized with Cytoscape software. The DEGs in AS and AI groups were overlapped with the top 30 genes with highest connectivity to screen out ten hub genes. The ten hub genes were verified by analyzing the data in high throughput RNA-sequencing dataset and real-time PCR assay using AS and AI aortic valve samples.ResultsBy WGCNA algorithm, 302 highly correlated genes with the degree of AS, degree of AI, and heart failure were identified from highly correlated modules. GO analyses showed that highly correlated genes had close relationship with collagen fibril organization, extracellular matrix organization and extracellular structure organization. KEGG analyses also manifested that protein digestion and absorption, and glutathione metabolism were probably involved in AS and AI pathological courses. Moreover, DEGs were picked out for 302 highly correlated genes in AS and AI groups relative to the normal control group. The PPI network analyses indicated the connectivity among these highly correlated genes. Finally, ten hub genes (CD74, COL1A1, TXNRD1, CCND1, COL5A1, SERPINH1, BCL6, ITGA10, FOS, and JUNB) in AS and AI were found out and verified.ConclusionOur study may provide the underlying molecular targets for the mechanism research, diagnosis, and treatment of AS and AI in the future

    Early identification of Parkinson’s disease with anxiety based on combined clinical and MRI features

    Get PDF
    ObjectiveTo identify cortical and subcortical volume, thickness and cortical area features and the networks they constituted related to anxiety in Parkinson’s disease (PD) using structural magnetic resonance imaging (sMRI), and to integrate multimodal features based on machine learning to identify PD-related anxiety.MethodsA total of 219 patients with PD were retrospectively enrolled in the study. 291 sMRI features including cortical volume, subcortical volume, cortical thickness, and cortical area, as well as 17 clinical features, were extracted. Graph theory analysis was used to explore structural networks. A support vector machine (SVM) combination model, which used both sMRI and clinical features to identify participants with PD-related anxiety, was developed and evaluated. The performance of SVM models were evaluated. The mean impact value (MIV) of the feature importance evaluation algorithm was used to rank the relative importance of sMRI features and clinical features within the model.Results17 significant sMRI variables associated with PD-related anxiety was used to build a brain structural network. And seven sMRI and 5 clinical features with statistically significant differences were incorporated into the SVM model. The comprehensive model achieved higher performance than clinical features or sMRI features did alone, with an accuracy of 0.88, a precision of 0.86, a sensitivity of 0.81, an F1-Score of 0.83, a macro-average of 0.85, a weighted-average of 0.92, an AUC of 0.88, and a result of 10-fold cross-validation of 0.91 in test set. The sMRI feature right medialorbitofrontal thickness had the highest impact on the prediction model.ConclusionWe identified the brain structural features and networks related to anxiety in PD, and developed and internally validated a comprehensive model with multimodal features in identifying

    1A6/DRIM, a Novel t-UTP, Activates RNA Polymerase I Transcription and Promotes Cell Proliferation

    Get PDF
    BACKGROUND: Ribosome biogenesis is required for protein synthesis and cell proliferation. Ribosome subunits are assembled in the nucleolus following transcription of a 47S ribosome RNA precursor by RNA polymerase I and rRNA processing to produce mature 18S, 28S and 5.8S rRNAs. The 18S rRNA is incorporated into the ribosomal small subunit, whereas the 28S and 5.8S rRNAs are incorporated into the ribosomal large subunit. Pol I transcription and rRNA processing are coordinated processes and this coordination has been demonstrated to be mediated by a subset of U3 proteins known as t-UTPs. Up to date, five t-UTPs have been identified in humans but the mechanism(s) that function in the t-UTP(s) activation of Pol I remain unknown. In this study we have identified 1A6/DRIM, which was identified as UTP20 in our previous study, as a t-UTP. In the present study, we investigated the function and mechanism of 1A6/DRIM in Pol I transcription. METHODOLOGY/PRINCIPAL FINDINGS: Knockdown of 1A6/DRIM by siRNA resulted in a decreased 47S pre-rRNA level as determined by Northern blotting. Ectopic expression of 1A6/DRIM activated and knockdown of 1A6/DRIM inhibited the human rDNA promoter as evaluated with luciferase reporter. Chromatin immunoprecipitation (ChIP) experiments showed that 1A6/DRIM bound UBF and the rDNA promoter. Re-ChIP assay showed that 1A6/DRIM interacts with UBF at the rDNA promoter. Immunoprecipitation confirmed the interaction between 1A6/DRIM and the nucleolar acetyl-transferase hALP. It is of note that knockdown of 1A6/DRIM dramatically inhibited UBF acetylation. A finding of significance was that 1A6/DRIM depletion, as a kind of nucleolar stress, caused an increase in p53 level and inhibited cell proliferation by arresting cells at G1. CONCLUSIONS: We identify 1A6/DRIM as a novel t-UTP. Our results suggest that 1A6/DRIM activates Pol I transcription most likely by associating with both hALP and UBF and thereby affecting the acetylation of UBF

    Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension

    No full text
    Hypertension is a key risk factor for cardiovascular disease and it is a growing public health problem worldwide. The pathophysiological mechanisms of vascular smooth muscle (VSM) contraction contribute to the development of hypertension. Calcium (Ca2+)-dependent and -independent signaling mechanisms regulate the balance of the myosin light chain kinase and myosin light chain phosphatase to induce myosin phosphorylation, which activates VSM contraction to control blood pressure (BP). Here, we discuss the mechanism of the contractile machinery in VSM, especially RhoA/Rho kinase and PKC/CPI-17 of Ca2+ sensitization pathway in hypertension. The two signaling pathways affect BP in physiological and pathophysiological conditions and are highlighted in pulmonary, pregnancy, and salt-sensitive hypertension
    • …
    corecore